File size: 72,273 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
from __future__ import annotations
from typing import Any

from functools import reduce
from itertools import permutations

from sympy.combinatorics import Permutation
from sympy.core import (
    Basic, Expr, Function, diff,
    Pow, Mul, Add, Lambda, S, Tuple, Dict
)
from sympy.core.cache import cacheit

from sympy.core.symbol import Symbol, Dummy
from sympy.core.symbol import Str
from sympy.core.sympify import _sympify
from sympy.functions import factorial
from sympy.matrices import ImmutableDenseMatrix as Matrix
from sympy.solvers import solve

from sympy.utilities.exceptions import (sympy_deprecation_warning,
                                        SymPyDeprecationWarning,
                                        ignore_warnings)


# TODO you are a bit excessive in the use of Dummies
# TODO dummy point, literal field
# TODO too often one needs to call doit or simplify on the output, check the
# tests and find out why
from sympy.tensor.array import ImmutableDenseNDimArray


class Manifold(Basic):
    """
    A mathematical manifold.

    Explanation
    ===========

    A manifold is a topological space that locally resembles
    Euclidean space near each point [1].
    This class does not provide any means to study the topological
    characteristics of the manifold that it represents, though.

    Parameters
    ==========

    name : str
        The name of the manifold.

    dim : int
        The dimension of the manifold.

    Examples
    ========

    >>> from sympy.diffgeom import Manifold
    >>> m = Manifold('M', 2)
    >>> m
    M
    >>> m.dim
    2

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Manifold
    """

    def __new__(cls, name, dim, **kwargs):
        if not isinstance(name, Str):
            name = Str(name)
        dim = _sympify(dim)
        obj = super().__new__(cls, name, dim)

        obj.patches = _deprecated_list(
            """
            Manifold.patches is deprecated. The Manifold object is now
            immutable. Instead use a separate list to keep track of the
            patches.
            """, [])
        return obj

    @property
    def name(self):
        return self.args[0]

    @property
    def dim(self):
        return self.args[1]


class Patch(Basic):
    """
    A patch on a manifold.

    Explanation
    ===========

    Coordinate patch, or patch in short, is a simply-connected open set around
    a point in the manifold [1]. On a manifold one can have many patches that
    do not always include the whole manifold. On these patches coordinate
    charts can be defined that permit the parameterization of any point on the
    patch in terms of a tuple of real numbers (the coordinates).

    This class does not provide any means to study the topological
    characteristics of the patch that it represents.

    Parameters
    ==========

    name : str
        The name of the patch.

    manifold : Manifold
        The manifold on which the patch is defined.

    Examples
    ========

    >>> from sympy.diffgeom import Manifold, Patch
    >>> m = Manifold('M', 2)
    >>> p = Patch('P', m)
    >>> p
    P
    >>> p.dim
    2

    References
    ==========

    .. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry
           (2013)

    """
    def __new__(cls, name, manifold, **kwargs):
        if not isinstance(name, Str):
            name = Str(name)
        obj = super().__new__(cls, name, manifold)

        obj.manifold.patches.append(obj) # deprecated
        obj.coord_systems = _deprecated_list(
            """
            Patch.coord_systms is deprecated. The Patch class is now
            immutable. Instead use a separate list to keep track of coordinate
            systems.
            """, [])
        return obj

    @property
    def name(self):
        return self.args[0]

    @property
    def manifold(self):
        return self.args[1]

    @property
    def dim(self):
        return self.manifold.dim


class CoordSystem(Basic):
    """
    A coordinate system defined on the patch.

    Explanation
    ===========

    Coordinate system is a system that uses one or more coordinates to uniquely
    determine the position of the points or other geometric elements on a
    manifold [1].

    By passing ``Symbols`` to *symbols* parameter, user can define the name and
    assumptions of coordinate symbols of the coordinate system. If not passed,
    these symbols are generated automatically and are assumed to be real valued.

    By passing *relations* parameter, user can define the transform relations of
    coordinate systems. Inverse transformation and indirect transformation can
    be found automatically. If this parameter is not passed, coordinate
    transformation cannot be done.

    Parameters
    ==========

    name : str
        The name of the coordinate system.

    patch : Patch
        The patch where the coordinate system is defined.

    symbols : list of Symbols, optional
        Defines the names and assumptions of coordinate symbols.

    relations : dict, optional
        Key is a tuple of two strings, who are the names of the systems where
        the coordinates transform from and transform to.
        Value is a tuple of the symbols before transformation and a tuple of
        the expressions after transformation.

    Examples
    ========

    We define two-dimensional Cartesian coordinate system and polar coordinate
    system.

    >>> from sympy import symbols, pi, sqrt, atan2, cos, sin
    >>> from sympy.diffgeom import Manifold, Patch, CoordSystem
    >>> m = Manifold('M', 2)
    >>> p = Patch('P', m)
    >>> x, y = symbols('x y', real=True)
    >>> r, theta = symbols('r theta', nonnegative=True)
    >>> relation_dict = {
    ... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
    ... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
    ... }
    >>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
    >>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)

    ``symbols`` property returns ``CoordinateSymbol`` instances. These symbols
    are not same with the symbols used to construct the coordinate system.

    >>> Car2D
    Car2D
    >>> Car2D.dim
    2
    >>> Car2D.symbols
    (x, y)
    >>> _[0].func
    <class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>

    ``transformation()`` method returns the transformation function from
    one coordinate system to another. ``transform()`` method returns the
    transformed coordinates.

    >>> Car2D.transformation(Pol)
    Lambda((x, y), Matrix([
    [sqrt(x**2 + y**2)],
    [      atan2(y, x)]]))
    >>> Car2D.transform(Pol)
    Matrix([
    [sqrt(x**2 + y**2)],
    [      atan2(y, x)]])
    >>> Car2D.transform(Pol, [1, 2])
    Matrix([
    [sqrt(5)],
    [atan(2)]])

    ``jacobian()`` method returns the Jacobian matrix of coordinate
    transformation between two systems. ``jacobian_determinant()`` method
    returns the Jacobian determinant of coordinate transformation between two
    systems.

    >>> Pol.jacobian(Car2D)
    Matrix([
    [cos(theta), -r*sin(theta)],
    [sin(theta),  r*cos(theta)]])
    >>> Pol.jacobian(Car2D, [1, pi/2])
    Matrix([
    [0, -1],
    [1,  0]])
    >>> Car2D.jacobian_determinant(Pol)
    1/sqrt(x**2 + y**2)
    >>> Car2D.jacobian_determinant(Pol, [1,0])
    1

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Coordinate_system

    """
    def __new__(cls, name, patch, symbols=None, relations={}, **kwargs):
        if not isinstance(name, Str):
            name = Str(name)

        # canonicallize the symbols
        if symbols is None:
            names = kwargs.get('names', None)
            if names is None:
                symbols = Tuple(
                    *[Symbol('%s_%s' % (name.name, i), real=True)
                      for i in range(patch.dim)]
                )
            else:
                sympy_deprecation_warning(
                    f"""
The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That
is, replace

    CoordSystem(..., names={names})

with

    CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}])
                    """,
                    deprecated_since_version="1.7",
                    active_deprecations_target="deprecated-diffgeom-mutable",
                )
                symbols = Tuple(
                    *[Symbol(n, real=True) for n in names]
                )
        else:
            syms = []
            for s in symbols:
                if isinstance(s, Symbol):
                    syms.append(Symbol(s.name, **s._assumptions.generator))
                elif isinstance(s, str):
                    sympy_deprecation_warning(
                        f"""

Passing a string as the coordinate symbol name to CoordSystem is deprecated.
Pass a Symbol with the appropriate name and assumptions instead.

That is, replace {s} with Symbol({s!r}, real=True).
                        """,

                        deprecated_since_version="1.7",
                        active_deprecations_target="deprecated-diffgeom-mutable",
                    )
                    syms.append(Symbol(s, real=True))
            symbols = Tuple(*syms)

        # canonicallize the relations
        rel_temp = {}
        for k,v in relations.items():
            s1, s2 = k
            if not isinstance(s1, Str):
                s1 = Str(s1)
            if not isinstance(s2, Str):
                s2 = Str(s2)
            key = Tuple(s1, s2)

            # Old version used Lambda as a value.
            if isinstance(v, Lambda):
                v = (tuple(v.signature), tuple(v.expr))
            else:
                v = (tuple(v[0]), tuple(v[1]))
            rel_temp[key] = v
        relations = Dict(rel_temp)

        # construct the object
        obj = super().__new__(cls, name, patch, symbols, relations)

        # Add deprecated attributes
        obj.transforms = _deprecated_dict(
            """
            CoordSystem.transforms is deprecated. The CoordSystem class is now
            immutable. Use the 'relations' keyword argument to the
            CoordSystems() constructor to specify relations.
            """, {})
        obj._names = [str(n) for n in symbols]
        obj.patch.coord_systems.append(obj) # deprecated
        obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated
        obj._dummy = Dummy()

        return obj

    @property
    def name(self):
        return self.args[0]

    @property
    def patch(self):
        return self.args[1]

    @property
    def manifold(self):
        return self.patch.manifold

    @property
    def symbols(self):
        return tuple(CoordinateSymbol(self, i, **s._assumptions.generator)
            for i,s in enumerate(self.args[2]))

    @property
    def relations(self):
        return self.args[3]

    @property
    def dim(self):
        return self.patch.dim

    ##########################################################################
    # Finding transformation relation
    ##########################################################################

    def transformation(self, sys):
        """
        Return coordinate transformation function from *self* to *sys*.

        Parameters
        ==========

        sys : CoordSystem

        Returns
        =======

        sympy.Lambda

        Examples
        ========

        >>> from sympy.diffgeom.rn import R2_r, R2_p
        >>> R2_r.transformation(R2_p)
        Lambda((x, y), Matrix([
        [sqrt(x**2 + y**2)],
        [      atan2(y, x)]]))

        """
        signature = self.args[2]

        key = Tuple(self.name, sys.name)
        if self == sys:
            expr = Matrix(self.symbols)
        elif key in self.relations:
            expr = Matrix(self.relations[key][1])
        elif key[::-1] in self.relations:
            expr = Matrix(self._inverse_transformation(sys, self))
        else:
            expr = Matrix(self._indirect_transformation(self, sys))
        return Lambda(signature, expr)

    @staticmethod
    def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name):
        ret = solve(
            [t[0] - t[1] for t in zip(sym2, exprs)],
            list(sym1), dict=True)

        if len(ret) == 0:
            temp = "Cannot solve inverse relation from {} to {}."
            raise NotImplementedError(temp.format(sys1_name, sys2_name))
        elif len(ret) > 1:
            temp = "Obtained multiple inverse relation from {} to {}."
            raise ValueError(temp.format(sys1_name, sys2_name))

        return ret[0]

    @classmethod
    def _inverse_transformation(cls, sys1, sys2):
        # Find the transformation relation from sys2 to sys1
        forward = sys1.transform(sys2)
        inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward,
                                         sys1.name, sys2.name)
        signature = tuple(sys1.symbols)
        return [inv_results[s] for s in signature]

    @classmethod
    @cacheit
    def _indirect_transformation(cls, sys1, sys2):
        # Find the transformation relation between two indirectly connected
        # coordinate systems
        rel = sys1.relations
        path = cls._dijkstra(sys1, sys2)

        transforms = []
        for s1, s2 in zip(path, path[1:]):
            if (s1, s2) in rel:
                transforms.append(rel[(s1, s2)])
            else:
                sym2, inv_exprs = rel[(s2, s1)]
                sym1 = tuple(Dummy() for i in sym2)
                ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1)
                ret = tuple(ret[s] for s in sym2)
                transforms.append((sym1, ret))
        syms = sys1.args[2]
        exprs = syms
        for newsyms, newexprs in transforms:
            exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs)
        return exprs

    @staticmethod
    def _dijkstra(sys1, sys2):
        # Use Dijkstra algorithm to find the shortest path between two indirectly-connected
        # coordinate systems
        # return value is the list of the names of the systems.
        relations = sys1.relations
        graph = {}
        for s1, s2 in relations.keys():
            if s1 not in graph:
                graph[s1] = {s2}
            else:
                graph[s1].add(s2)
            if s2 not in graph:
                graph[s2] = {s1}
            else:
                graph[s2].add(s1)

        path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited

        def visit(sys):
            path_dict[sys][2] = 1
            for newsys in graph[sys]:
                distance = path_dict[sys][0] + 1
                if path_dict[newsys][0] >= distance or not path_dict[newsys][1]:
                    path_dict[newsys][0] = distance
                    path_dict[newsys][1] = list(path_dict[sys][1])
                    path_dict[newsys][1].append(sys)

        visit(sys1.name)

        while True:
            min_distance = max(path_dict.values(), key=lambda x:x[0])[0]
            newsys = None
            for sys, lst in path_dict.items():
                if 0 < lst[0] <= min_distance and not lst[2]:
                    min_distance = lst[0]
                    newsys = sys
            if newsys is None:
                break
            visit(newsys)

        result = path_dict[sys2.name][1]
        result.append(sys2.name)

        if result == [sys2.name]:
            raise KeyError("Two coordinate systems are not connected.")
        return result

    def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
        sympy_deprecation_warning(
            """
            The CoordSystem.connect_to() method is deprecated. Instead,
            generate a new instance of CoordSystem with the 'relations'
            keyword argument (CoordSystem classes are now immutable).
            """,
            deprecated_since_version="1.7",
            active_deprecations_target="deprecated-diffgeom-mutable",
        )

        from_coords, to_exprs = dummyfy(from_coords, to_exprs)
        self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)

        if inverse:
            to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)

        if fill_in_gaps:
            self._fill_gaps_in_transformations()

    @staticmethod
    def _inv_transf(from_coords, to_exprs):
        # Will be removed when connect_to is removed
        inv_from = [i.as_dummy() for i in from_coords]
        inv_to = solve(
            [t[0] - t[1] for t in zip(inv_from, to_exprs)],
            list(from_coords), dict=True)[0]
        inv_to = [inv_to[fc] for fc in from_coords]
        return Matrix(inv_from), Matrix(inv_to)

    @staticmethod
    def _fill_gaps_in_transformations():
        # Will be removed when connect_to is removed
        raise NotImplementedError

    ##########################################################################
    # Coordinate transformations
    ##########################################################################

    def transform(self, sys, coordinates=None):
        """
        Return the result of coordinate transformation from *self* to *sys*.
        If coordinates are not given, coordinate symbols of *self* are used.

        Parameters
        ==========

        sys : CoordSystem

        coordinates : Any iterable, optional.

        Returns
        =======

        sympy.ImmutableDenseMatrix containing CoordinateSymbol

        Examples
        ========

        >>> from sympy.diffgeom.rn import R2_r, R2_p
        >>> R2_r.transform(R2_p)
        Matrix([
        [sqrt(x**2 + y**2)],
        [      atan2(y, x)]])
        >>> R2_r.transform(R2_p, [0, 1])
        Matrix([
        [   1],
        [pi/2]])

        """
        if coordinates is None:
            coordinates = self.symbols
        if self != sys:
            transf = self.transformation(sys)
            coordinates = transf(*coordinates)
        else:
            coordinates = Matrix(coordinates)
        return coordinates

    def coord_tuple_transform_to(self, to_sys, coords):
        """Transform ``coords`` to coord system ``to_sys``."""
        sympy_deprecation_warning(
            """
            The CoordSystem.coord_tuple_transform_to() method is deprecated.
            Use the CoordSystem.transform() method instead.
            """,
            deprecated_since_version="1.7",
            active_deprecations_target="deprecated-diffgeom-mutable",
        )

        coords = Matrix(coords)
        if self != to_sys:
            with ignore_warnings(SymPyDeprecationWarning):
                transf = self.transforms[to_sys]
            coords = transf[1].subs(list(zip(transf[0], coords)))
        return coords

    def jacobian(self, sys, coordinates=None):
        """
        Return the jacobian matrix of a transformation on given coordinates.
        If coordinates are not given, coordinate symbols of *self* are used.

        Parameters
        ==========

        sys : CoordSystem

        coordinates : Any iterable, optional.

        Returns
        =======

        sympy.ImmutableDenseMatrix

        Examples
        ========

        >>> from sympy.diffgeom.rn import R2_r, R2_p
        >>> R2_p.jacobian(R2_r)
        Matrix([
        [cos(theta), -rho*sin(theta)],
        [sin(theta),  rho*cos(theta)]])
        >>> R2_p.jacobian(R2_r, [1, 0])
        Matrix([
        [1, 0],
        [0, 1]])

        """
        result = self.transform(sys).jacobian(self.symbols)
        if coordinates is not None:
            result = result.subs(list(zip(self.symbols, coordinates)))
        return result
    jacobian_matrix = jacobian

    def jacobian_determinant(self, sys, coordinates=None):
        """
        Return the jacobian determinant of a transformation on given
        coordinates. If coordinates are not given, coordinate symbols of *self*
        are used.

        Parameters
        ==========

        sys : CoordSystem

        coordinates : Any iterable, optional.

        Returns
        =======

        sympy.Expr

        Examples
        ========

        >>> from sympy.diffgeom.rn import R2_r, R2_p
        >>> R2_r.jacobian_determinant(R2_p)
        1/sqrt(x**2 + y**2)
        >>> R2_r.jacobian_determinant(R2_p, [1, 0])
        1

        """
        return self.jacobian(sys, coordinates).det()


    ##########################################################################
    # Points
    ##########################################################################

    def point(self, coords):
        """Create a ``Point`` with coordinates given in this coord system."""
        return Point(self, coords)

    def point_to_coords(self, point):
        """Calculate the coordinates of a point in this coord system."""
        return point.coords(self)

    ##########################################################################
    # Base fields.
    ##########################################################################

    def base_scalar(self, coord_index):
        """Return ``BaseScalarField`` that takes a point and returns one of the coordinates."""
        return BaseScalarField(self, coord_index)
    coord_function = base_scalar

    def base_scalars(self):
        """Returns a list of all coordinate functions.
        For more details see the ``base_scalar`` method of this class."""
        return [self.base_scalar(i) for i in range(self.dim)]
    coord_functions = base_scalars

    def base_vector(self, coord_index):
        """Return a basis vector field.
        The basis vector field for this coordinate system. It is also an
        operator on scalar fields."""
        return BaseVectorField(self, coord_index)

    def base_vectors(self):
        """Returns a list of all base vectors.
        For more details see the ``base_vector`` method of this class."""
        return [self.base_vector(i) for i in range(self.dim)]

    def base_oneform(self, coord_index):
        """Return a basis 1-form field.
        The basis one-form field for this coordinate system. It is also an
        operator on vector fields."""
        return Differential(self.coord_function(coord_index))

    def base_oneforms(self):
        """Returns a list of all base oneforms.
        For more details see the ``base_oneform`` method of this class."""
        return [self.base_oneform(i) for i in range(self.dim)]


class CoordinateSymbol(Symbol):
    """A symbol which denotes an abstract value of i-th coordinate of
    the coordinate system with given context.

    Explanation
    ===========

    Each coordinates in coordinate system are represented by unique symbol,
    such as x, y, z in Cartesian coordinate system.

    You may not construct this class directly. Instead, use `symbols` method
    of CoordSystem.

    Parameters
    ==========

    coord_sys : CoordSystem

    index : integer

    Examples
    ========

    >>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
    >>> from sympy.diffgeom import Manifold, Patch, CoordSystem
    >>> m = Manifold('M', 2)
    >>> p = Patch('P', m)
    >>> x, y = symbols('x y', real=True)
    >>> r, theta = symbols('r theta', nonnegative=True)
    >>> relation_dict = {
    ... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])),
    ... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)]))
    ... }
    >>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
    >>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
    >>> x, y = Car2D.symbols

    ``CoordinateSymbol`` contains its coordinate symbol and index.

    >>> x.name
    'x'
    >>> x.coord_sys == Car2D
    True
    >>> x.index
    0
    >>> x.is_real
    True

    You can transform ``CoordinateSymbol`` into other coordinate system using
    ``rewrite()`` method.

    >>> x.rewrite(Pol)
    r*cos(theta)
    >>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
    r

    """
    def __new__(cls, coord_sys, index, **assumptions):
        name = coord_sys.args[2][index].name
        obj = super().__new__(cls, name, **assumptions)
        obj.coord_sys = coord_sys
        obj.index = index
        return obj

    def __getnewargs__(self):
        return (self.coord_sys, self.index)

    def _hashable_content(self):
        return (
            self.coord_sys, self.index
        ) + tuple(sorted(self.assumptions0.items()))

    def _eval_rewrite(self, rule, args, **hints):
        if isinstance(rule, CoordSystem):
            return rule.transform(self.coord_sys)[self.index]
        return super()._eval_rewrite(rule, args, **hints)


class Point(Basic):
    """Point defined in a coordinate system.

    Explanation
    ===========

    Mathematically, point is defined in the manifold and does not have any coordinates
    by itself. Coordinate system is what imbues the coordinates to the point by coordinate
    chart. However, due to the difficulty of realizing such logic, you must supply
    a coordinate system and coordinates to define a Point here.

    The usage of this object after its definition is independent of the
    coordinate system that was used in order to define it, however due to
    limitations in the simplification routines you can arrive at complicated
    expressions if you use inappropriate coordinate systems.

    Parameters
    ==========

    coord_sys : CoordSystem

    coords : list
        The coordinates of the point.

    Examples
    ========

    >>> from sympy import pi
    >>> from sympy.diffgeom import Point
    >>> from sympy.diffgeom.rn import R2, R2_r, R2_p
    >>> rho, theta = R2_p.symbols

    >>> p = Point(R2_p, [rho, 3*pi/4])

    >>> p.manifold == R2
    True

    >>> p.coords()
    Matrix([
    [   rho],
    [3*pi/4]])
    >>> p.coords(R2_r)
    Matrix([
    [-sqrt(2)*rho/2],
    [ sqrt(2)*rho/2]])

    """

    def __new__(cls, coord_sys, coords, **kwargs):
        coords = Matrix(coords)
        obj = super().__new__(cls, coord_sys, coords)
        obj._coord_sys = coord_sys
        obj._coords = coords
        return obj

    @property
    def patch(self):
        return self._coord_sys.patch

    @property
    def manifold(self):
        return self._coord_sys.manifold

    @property
    def dim(self):
        return self.manifold.dim

    def coords(self, sys=None):
        """
        Coordinates of the point in given coordinate system. If coordinate system
        is not passed, it returns the coordinates in the coordinate system in which
        the poin was defined.
        """
        if sys is None:
            return self._coords
        else:
            return self._coord_sys.transform(sys, self._coords)

    @property
    def free_symbols(self):
        return self._coords.free_symbols


class BaseScalarField(Expr):
    """Base scalar field over a manifold for a given coordinate system.

    Explanation
    ===========

    A scalar field takes a point as an argument and returns a scalar.
    A base scalar field of a coordinate system takes a point and returns one of
    the coordinates of that point in the coordinate system in question.

    To define a scalar field you need to choose the coordinate system and the
    index of the coordinate.

    The use of the scalar field after its definition is independent of the
    coordinate system in which it was defined, however due to limitations in
    the simplification routines you may arrive at more complicated
    expression if you use unappropriate coordinate systems.
    You can build complicated scalar fields by just building up SymPy
    expressions containing ``BaseScalarField`` instances.

    Parameters
    ==========

    coord_sys : CoordSystem

    index : integer

    Examples
    ========

    >>> from sympy import Function, pi
    >>> from sympy.diffgeom import BaseScalarField
    >>> from sympy.diffgeom.rn import R2_r, R2_p
    >>> rho, _ = R2_p.symbols
    >>> point = R2_p.point([rho, 0])
    >>> fx, fy = R2_r.base_scalars()
    >>> ftheta = BaseScalarField(R2_r, 1)

    >>> fx(point)
    rho
    >>> fy(point)
    0

    >>> (fx**2+fy**2).rcall(point)
    rho**2

    >>> g = Function('g')
    >>> fg = g(ftheta-pi)
    >>> fg.rcall(point)
    g(-pi)

    """

    is_commutative = True

    def __new__(cls, coord_sys, index, **kwargs):
        index = _sympify(index)
        obj = super().__new__(cls, coord_sys, index)
        obj._coord_sys = coord_sys
        obj._index = index
        return obj

    @property
    def coord_sys(self):
        return self.args[0]

    @property
    def index(self):
        return self.args[1]

    @property
    def patch(self):
        return self.coord_sys.patch

    @property
    def manifold(self):
        return self.coord_sys.manifold

    @property
    def dim(self):
        return self.manifold.dim

    def __call__(self, *args):
        """Evaluating the field at a point or doing nothing.
        If the argument is a ``Point`` instance, the field is evaluated at that
        point. The field is returned itself if the argument is any other
        object. It is so in order to have working recursive calling mechanics
        for all fields (check the ``__call__`` method of ``Expr``).
        """
        point = args[0]
        if len(args) != 1 or not isinstance(point, Point):
            return self
        coords = point.coords(self._coord_sys)
        # XXX Calling doit  is necessary with all the Subs expressions
        # XXX Calling simplify is necessary with all the trig expressions
        return simplify(coords[self._index]).doit()

    # XXX Workaround for limitations on the content of args
    free_symbols: set[Any] = set()


class BaseVectorField(Expr):
    r"""Base vector field over a manifold for a given coordinate system.

    Explanation
    ===========

    A vector field is an operator taking a scalar field and returning a
    directional derivative (which is also a scalar field).
    A base vector field is the same type of operator, however the derivation is
    specifically done with respect to a chosen coordinate.

    To define a base vector field you need to choose the coordinate system and
    the index of the coordinate.

    The use of the vector field after its definition is independent of the
    coordinate system in which it was defined, however due to limitations in the
    simplification routines you may arrive at more complicated expression if you
    use unappropriate coordinate systems.

    Parameters
    ==========
    coord_sys : CoordSystem

    index : integer

    Examples
    ========

    >>> from sympy import Function
    >>> from sympy.diffgeom.rn import R2_p, R2_r
    >>> from sympy.diffgeom import BaseVectorField
    >>> from sympy import pprint

    >>> x, y = R2_r.symbols
    >>> rho, theta = R2_p.symbols
    >>> fx, fy = R2_r.base_scalars()
    >>> point_p = R2_p.point([rho, theta])
    >>> point_r = R2_r.point([x, y])

    >>> g = Function('g')
    >>> s_field = g(fx, fy)

    >>> v = BaseVectorField(R2_r, 1)
    >>> pprint(v(s_field))
    / d           \|
    |---(g(x, xi))||
    \dxi          /|xi=y
    >>> pprint(v(s_field).rcall(point_r).doit())
    d
    --(g(x, y))
    dy
    >>> pprint(v(s_field).rcall(point_p))
    / d                        \|
    |---(g(rho*cos(theta), xi))||
    \dxi                       /|xi=rho*sin(theta)

    """

    is_commutative = False

    def __new__(cls, coord_sys, index, **kwargs):
        index = _sympify(index)
        obj = super().__new__(cls, coord_sys, index)
        obj._coord_sys = coord_sys
        obj._index = index
        return obj

    @property
    def coord_sys(self):
        return self.args[0]

    @property
    def index(self):
        return self.args[1]

    @property
    def patch(self):
        return self.coord_sys.patch

    @property
    def manifold(self):
        return self.coord_sys.manifold

    @property
    def dim(self):
        return self.manifold.dim

    def __call__(self, scalar_field):
        """Apply on a scalar field.
        The action of a vector field on a scalar field is a directional
        differentiation.
        If the argument is not a scalar field an error is raised.
        """
        if covariant_order(scalar_field) or contravariant_order(scalar_field):
            raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')

        if scalar_field is None:
            return self

        base_scalars = list(scalar_field.atoms(BaseScalarField))

        # First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
        d_var = self._coord_sys._dummy
        # TODO: you need a real dummy function for the next line
        d_funcs = [Function('_#_%s' % i)(d_var) for i,
                   b in enumerate(base_scalars)]
        d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
        d_result = d_result.diff(d_var)

        # Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
        coords = self._coord_sys.symbols
        d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
        d_funcs_deriv_sub = []
        for b in base_scalars:
            jac = self._coord_sys.jacobian(b._coord_sys, coords)
            d_funcs_deriv_sub.append(jac[b._index, self._index])
        d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))

        # Remove the dummies
        result = d_result.subs(list(zip(d_funcs, base_scalars)))
        result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
        return result.doit()


def _find_coords(expr):
    # Finds CoordinateSystems existing in expr
    fields = expr.atoms(BaseScalarField, BaseVectorField)
    return {f._coord_sys for f in fields}


class Commutator(Expr):
    r"""Commutator of two vector fields.

    Explanation
    ===========

    The commutator of two vector fields `v_1` and `v_2` is defined as the
    vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
    to `v_1(v_2(f)) - v_2(v_1(f))`.

    Examples
    ========


    >>> from sympy.diffgeom.rn import R2_p, R2_r
    >>> from sympy.diffgeom import Commutator
    >>> from sympy import simplify

    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> e_r = R2_p.base_vector(0)

    >>> c_xy = Commutator(e_x, e_y)
    >>> c_xr = Commutator(e_x, e_r)
    >>> c_xy
    0

    Unfortunately, the current code is not able to compute everything:

    >>> c_xr
    Commutator(e_x, e_rho)
    >>> simplify(c_xr(fy**2))
    -2*cos(theta)*y**2/(x**2 + y**2)

    """
    def __new__(cls, v1, v2):
        if (covariant_order(v1) or contravariant_order(v1) != 1
                or covariant_order(v2) or contravariant_order(v2) != 1):
            raise ValueError(
                'Only commutators of vector fields are supported.')
        if v1 == v2:
            return S.Zero
        coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)])
        if len(coord_sys) == 1:
            # Only one coordinate systems is used, hence it is easy enough to
            # actually evaluate the commutator.
            if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
                return S.Zero
            bases_1, bases_2 = [list(v.atoms(BaseVectorField))
                                for v in (v1, v2)]
            coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
            coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
            res = 0
            for c1, b1 in zip(coeffs_1, bases_1):
                for c2, b2 in zip(coeffs_2, bases_2):
                    res += c1*b1(c2)*b2 - c2*b2(c1)*b1
            return res
        else:
            obj = super().__new__(cls, v1, v2)
            obj._v1 = v1 # deprecated assignment
            obj._v2 = v2 # deprecated assignment
            return obj

    @property
    def v1(self):
        return self.args[0]

    @property
    def v2(self):
        return self.args[1]

    def __call__(self, scalar_field):
        """Apply on a scalar field.
        If the argument is not a scalar field an error is raised.
        """
        return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field))


class Differential(Expr):
    r"""Return the differential (exterior derivative) of a form field.

    Explanation
    ===========

    The differential of a form (i.e. the exterior derivative) has a complicated
    definition in the general case.
    The differential `df` of the 0-form `f` is defined for any vector field `v`
    as `df(v) = v(f)`.

    Examples
    ========

    >>> from sympy import Function
    >>> from sympy.diffgeom.rn import R2_r
    >>> from sympy.diffgeom import Differential
    >>> from sympy import pprint

    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> g = Function('g')
    >>> s_field = g(fx, fy)
    >>> dg = Differential(s_field)

    >>> dg
    d(g(x, y))
    >>> pprint(dg(e_x))
    / d           \|
    |---(g(xi, y))||
    \dxi          /|xi=x
    >>> pprint(dg(e_y))
    / d           \|
    |---(g(x, xi))||
    \dxi          /|xi=y

    Applying the exterior derivative operator twice always results in:

    >>> Differential(dg)
    0
    """

    is_commutative = False

    def __new__(cls, form_field):
        if contravariant_order(form_field):
            raise ValueError(
                'A vector field was supplied as an argument to Differential.')
        if isinstance(form_field, Differential):
            return S.Zero
        else:
            obj = super().__new__(cls, form_field)
            obj._form_field = form_field # deprecated assignment
            return obj

    @property
    def form_field(self):
        return self.args[0]

    def __call__(self, *vector_fields):
        """Apply on a list of vector_fields.

        Explanation
        ===========

        If the number of vector fields supplied is not equal to 1 + the order of
        the form field inside the differential the result is undefined.

        For 1-forms (i.e. differentials of scalar fields) the evaluation is
        done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
        field, the differential is returned unchanged. This is done in order to
        permit partial contractions for higher forms.

        In the general case the evaluation is done by applying the form field
        inside the differential on a list with one less elements than the number
        of elements in the original list. Lowering the number of vector fields
        is achieved through replacing each pair of fields by their
        commutator.

        If the arguments are not vectors or ``None``s an error is raised.
        """
        if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
                for a in vector_fields):
            raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
        k = len(vector_fields)
        if k == 1:
            if vector_fields[0]:
                return vector_fields[0].rcall(self._form_field)
            return self
        else:
            # For higher form it is more complicated:
            # Invariant formula:
            # https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
            # df(v1, ... vn) = +/- vi(f(v1..no i..vn))
            #                  +/- f([vi,vj],v1..no i, no j..vn)
            f = self._form_field
            v = vector_fields
            ret = 0
            for i in range(k):
                t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
                ret += (-1)**i*t
                for j in range(i + 1, k):
                    c = Commutator(v[i], v[j])
                    if c:  # TODO this is ugly - the Commutator can be Zero and
                        # this causes the next line to fail
                        t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
                        ret += (-1)**(i + j)*t
            return ret


class TensorProduct(Expr):
    """Tensor product of forms.

    Explanation
    ===========

    The tensor product permits the creation of multilinear functionals (i.e.
    higher order tensors) out of lower order fields (e.g. 1-forms and vector
    fields). However, the higher tensors thus created lack the interesting
    features provided by the other type of product, the wedge product, namely
    they are not antisymmetric and hence are not form fields.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2_r
    >>> from sympy.diffgeom import TensorProduct

    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> dx, dy = R2_r.base_oneforms()

    >>> TensorProduct(dx, dy)(e_x, e_y)
    1
    >>> TensorProduct(dx, dy)(e_y, e_x)
    0
    >>> TensorProduct(dx, fx*dy)(fx*e_x, e_y)
    x**2
    >>> TensorProduct(e_x, e_y)(fx**2, fy**2)
    4*x*y
    >>> TensorProduct(e_y, dx)(fy)
    dx

    You can nest tensor products.

    >>> tp1 = TensorProduct(dx, dy)
    >>> TensorProduct(tp1, dx)(e_x, e_y, e_x)
    1

    You can make partial contraction for instance when 'raising an index'.
    Putting ``None`` in the second argument of ``rcall`` means that the
    respective position in the tensor product is left as it is.

    >>> TP = TensorProduct
    >>> metric = TP(dx, dx) + 3*TP(dy, dy)
    >>> metric.rcall(e_y, None)
    3*dy

    Or automatically pad the args with ``None`` without specifying them.

    >>> metric.rcall(e_y)
    3*dy

    """
    def __new__(cls, *args):
        scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
        multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
        if multifields:
            if len(multifields) == 1:
                return scalar*multifields[0]
            return scalar*super().__new__(cls, *multifields)
        else:
            return scalar

    def __call__(self, *fields):
        """Apply on a list of fields.

        If the number of input fields supplied is not equal to the order of
        the tensor product field, the list of arguments is padded with ``None``'s.

        The list of arguments is divided in sublists depending on the order of
        the forms inside the tensor product. The sublists are provided as
        arguments to these forms and the resulting expressions are given to the
        constructor of ``TensorProduct``.

        """
        tot_order = covariant_order(self) + contravariant_order(self)
        tot_args = len(fields)
        if tot_args != tot_order:
            fields = list(fields) + [None]*(tot_order - tot_args)
        orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
        indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
        fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
        multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
        return TensorProduct(*multipliers)


class WedgeProduct(TensorProduct):
    """Wedge product of forms.

    Explanation
    ===========

    In the context of integration only completely antisymmetric forms make
    sense. The wedge product permits the creation of such forms.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2_r
    >>> from sympy.diffgeom import WedgeProduct

    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> dx, dy = R2_r.base_oneforms()

    >>> WedgeProduct(dx, dy)(e_x, e_y)
    1
    >>> WedgeProduct(dx, dy)(e_y, e_x)
    -1
    >>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y)
    x**2
    >>> WedgeProduct(e_x, e_y)(fy, None)
    -e_x

    You can nest wedge products.

    >>> wp1 = WedgeProduct(dx, dy)
    >>> WedgeProduct(wp1, dx)(e_x, e_y, e_x)
    0

    """
    # TODO the calculation of signatures is slow
    # TODO you do not need all these permutations (neither the prefactor)
    def __call__(self, *fields):
        """Apply on a list of vector_fields.
        The expression is rewritten internally in terms of tensor products and evaluated."""
        orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
        mul = 1/Mul(*(factorial(o) for o in orders))
        perms = permutations(fields)
        perms_par = (Permutation(
            p).signature() for p in permutations(range(len(fields))))
        tensor_prod = TensorProduct(*self.args)
        return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])


class LieDerivative(Expr):
    """Lie derivative with respect to a vector field.

    Explanation
    ===========

    The transport operator that defines the Lie derivative is the pushforward of
    the field to be derived along the integral curve of the field with respect
    to which one derives.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2_r, R2_p
    >>> from sympy.diffgeom import (LieDerivative, TensorProduct)

    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> e_rho, e_theta = R2_p.base_vectors()
    >>> dx, dy = R2_r.base_oneforms()

    >>> LieDerivative(e_x, fy)
    0
    >>> LieDerivative(e_x, fx)
    1
    >>> LieDerivative(e_x, e_x)
    0

    The Lie derivative of a tensor field by another tensor field is equal to
    their commutator:

    >>> LieDerivative(e_x, e_rho)
    Commutator(e_x, e_rho)
    >>> LieDerivative(e_x + e_y, fx)
    1

    >>> tp = TensorProduct(dx, dy)
    >>> LieDerivative(e_x, tp)
    LieDerivative(e_x, TensorProduct(dx, dy))
    >>> LieDerivative(e_x, tp)
    LieDerivative(e_x, TensorProduct(dx, dy))

    """
    def __new__(cls, v_field, expr):
        expr_form_ord = covariant_order(expr)
        if contravariant_order(v_field) != 1 or covariant_order(v_field):
            raise ValueError('Lie derivatives are defined only with respect to'
                             ' vector fields. The supplied argument was not a '
                             'vector field.')
        if expr_form_ord > 0:
            obj = super().__new__(cls, v_field, expr)
            # deprecated assignments
            obj._v_field = v_field
            obj._expr = expr
            return obj
        if expr.atoms(BaseVectorField):
            return Commutator(v_field, expr)
        else:
            return v_field.rcall(expr)

    @property
    def v_field(self):
        return self.args[0]

    @property
    def expr(self):
        return self.args[1]

    def __call__(self, *args):
        v = self.v_field
        expr = self.expr
        lead_term = v(expr(*args))
        rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
                     for i in range(len(args))])
        return lead_term - rest


class BaseCovarDerivativeOp(Expr):
    """Covariant derivative operator with respect to a base vector.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2_r
    >>> from sympy.diffgeom import BaseCovarDerivativeOp
    >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct

    >>> TP = TensorProduct
    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> dx, dy = R2_r.base_oneforms()

    >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
    >>> ch
    [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
    >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
    >>> cvd(fx)
    1
    >>> cvd(fx*e_x)
    e_x
    """

    def __new__(cls, coord_sys, index, christoffel):
        index = _sympify(index)
        christoffel = ImmutableDenseNDimArray(christoffel)
        obj = super().__new__(cls, coord_sys, index, christoffel)
        # deprecated assignments
        obj._coord_sys = coord_sys
        obj._index = index
        obj._christoffel = christoffel
        return obj

    @property
    def coord_sys(self):
        return self.args[0]

    @property
    def index(self):
        return self.args[1]

    @property
    def christoffel(self):
        return self.args[2]

    def __call__(self, field):
        """Apply on a scalar field.

        The action of a vector field on a scalar field is a directional
        differentiation.
        If the argument is not a scalar field the behaviour is undefined.
        """
        if covariant_order(field) != 0:
            raise NotImplementedError()

        field = vectors_in_basis(field, self._coord_sys)

        wrt_vector = self._coord_sys.base_vector(self._index)
        wrt_scalar = self._coord_sys.coord_function(self._index)
        vectors = list(field.atoms(BaseVectorField))

        # First step: replace all vectors with something susceptible to
        # derivation and do the derivation
        # TODO: you need a real dummy function for the next line
        d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
                   b in enumerate(vectors)]
        d_result = field.subs(list(zip(vectors, d_funcs)))
        d_result = wrt_vector(d_result)

        # Second step: backsubstitute the vectors in
        d_result = d_result.subs(list(zip(d_funcs, vectors)))

        # Third step: evaluate the derivatives of the vectors
        derivs = []
        for v in vectors:
            d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
                       *v._coord_sys.base_vector(k))
                      for k in range(v._coord_sys.dim)])
            derivs.append(d)
        to_subs = [wrt_vector(d) for d in d_funcs]
        # XXX: This substitution can fail when there are Dummy symbols and the
        # cache is disabled: https://github.com/sympy/sympy/issues/17794
        result = d_result.subs(list(zip(to_subs, derivs)))

        # Remove the dummies
        result = result.subs(list(zip(d_funcs, vectors)))
        return result.doit()


class CovarDerivativeOp(Expr):
    """Covariant derivative operator.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2_r
    >>> from sympy.diffgeom import CovarDerivativeOp
    >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
    >>> TP = TensorProduct
    >>> fx, fy = R2_r.base_scalars()
    >>> e_x, e_y = R2_r.base_vectors()
    >>> dx, dy = R2_r.base_oneforms()
    >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))

    >>> ch
    [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
    >>> cvd = CovarDerivativeOp(fx*e_x, ch)
    >>> cvd(fx)
    x
    >>> cvd(fx*e_x)
    x*e_x

    """

    def __new__(cls, wrt, christoffel):
        if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1:
            raise NotImplementedError()
        if contravariant_order(wrt) != 1 or covariant_order(wrt):
            raise ValueError('Covariant derivatives are defined only with '
                             'respect to vector fields. The supplied argument '
                             'was not a vector field.')
        christoffel = ImmutableDenseNDimArray(christoffel)
        obj = super().__new__(cls, wrt, christoffel)
        # deprecated assignments
        obj._wrt = wrt
        obj._christoffel = christoffel
        return obj

    @property
    def wrt(self):
        return self.args[0]

    @property
    def christoffel(self):
        return self.args[1]

    def __call__(self, field):
        vectors = list(self._wrt.atoms(BaseVectorField))
        base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
                    for v in vectors]
        return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)


###############################################################################
# Integral curves on vector fields
###############################################################################
def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
    r"""Return the series expansion for an integral curve of the field.

    Explanation
    ===========

    Integral curve is a function `\gamma` taking a parameter in `R` to a point
    in the manifold. It verifies the equation:

    `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`

    where the given ``vector_field`` is denoted as `V`. This holds for any
    value `t` for the parameter and any scalar field `f`.

    This equation can also be decomposed of a basis of coordinate functions
    `V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`

    This function returns a series expansion of `\gamma(t)` in terms of the
    coordinate system ``coord_sys``. The equations and expansions are necessarily
    done in coordinate-system-dependent way as there is no other way to
    represent movement between points on the manifold (i.e. there is no such
    thing as a difference of points for a general manifold).

    Parameters
    ==========
    vector_field
        the vector field for which an integral curve will be given

    param
        the argument of the function `\gamma` from R to the curve

    start_point
        the point which corresponds to `\gamma(0)`

    n
        the order to which to expand

    coord_sys
        the coordinate system in which to expand
        coeffs (default False) - if True return a list of elements of the expansion

    Examples
    ========

    Use the predefined R2 manifold:

    >>> from sympy.abc import t, x, y
    >>> from sympy.diffgeom.rn import R2_p, R2_r
    >>> from sympy.diffgeom import intcurve_series

    Specify a starting point and a vector field:

    >>> start_point = R2_r.point([x, y])
    >>> vector_field = R2_r.e_x

    Calculate the series:

    >>> intcurve_series(vector_field, t, start_point, n=3)
    Matrix([
    [t + x],
    [    y]])

    Or get the elements of the expansion in a list:

    >>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
    >>> series[0]
    Matrix([
    [x],
    [y]])
    >>> series[1]
    Matrix([
    [t],
    [0]])
    >>> series[2]
    Matrix([
    [0],
    [0]])

    The series in the polar coordinate system:

    >>> series = intcurve_series(vector_field, t, start_point,
    ...             n=3, coord_sys=R2_p, coeffs=True)
    >>> series[0]
    Matrix([
    [sqrt(x**2 + y**2)],
    [      atan2(y, x)]])
    >>> series[1]
    Matrix([
    [t*x/sqrt(x**2 + y**2)],
    [   -t*y/(x**2 + y**2)]])
    >>> series[2]
    Matrix([
    [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
    [                                t**2*x*y/(x**2 + y**2)**2]])

    See Also
    ========

    intcurve_diffequ

    """
    if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
        raise ValueError('The supplied field was not a vector field.')

    def iter_vfield(scalar_field, i):
        """Return ``vector_field`` called `i` times on ``scalar_field``."""
        return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)

    def taylor_terms_per_coord(coord_function):
        """Return the series for one of the coordinates."""
        return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
                for i in range(n)]
    coord_sys = coord_sys if coord_sys else start_point._coord_sys
    coord_functions = coord_sys.coord_functions()
    taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
    if coeffs:
        return [Matrix(t) for t in zip(*taylor_terms)]
    else:
        return Matrix([sum(c) for c in taylor_terms])


def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
    r"""Return the differential equation for an integral curve of the field.

    Explanation
    ===========

    Integral curve is a function `\gamma` taking a parameter in `R` to a point
    in the manifold. It verifies the equation:

    `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`

    where the given ``vector_field`` is denoted as `V`. This holds for any
    value `t` for the parameter and any scalar field `f`.

    This function returns the differential equation of `\gamma(t)` in terms of the
    coordinate system ``coord_sys``. The equations and expansions are necessarily
    done in coordinate-system-dependent way as there is no other way to
    represent movement between points on the manifold (i.e. there is no such
    thing as a difference of points for a general manifold).

    Parameters
    ==========

    vector_field
        the vector field for which an integral curve will be given

    param
        the argument of the function `\gamma` from R to the curve

    start_point
        the point which corresponds to `\gamma(0)`

    coord_sys
        the coordinate system in which to give the equations

    Returns
    =======

    a tuple of (equations, initial conditions)

    Examples
    ========

    Use the predefined R2 manifold:

    >>> from sympy.abc import t
    >>> from sympy.diffgeom.rn import R2, R2_p, R2_r
    >>> from sympy.diffgeom import intcurve_diffequ

    Specify a starting point and a vector field:

    >>> start_point = R2_r.point([0, 1])
    >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y

    Get the equation:

    >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
    >>> equations
    [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
    >>> init_cond
    [f_0(0), f_1(0) - 1]

    The series in the polar coordinate system:

    >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
    >>> equations
    [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
    >>> init_cond
    [f_0(0) - 1, f_1(0) - pi/2]

    See Also
    ========

    intcurve_series

    """
    if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
        raise ValueError('The supplied field was not a vector field.')
    coord_sys = coord_sys if coord_sys else start_point._coord_sys
    gammas = [Function('f_%d' % i)(param) for i in range(
        start_point._coord_sys.dim)]
    arbitrary_p = Point(coord_sys, gammas)
    coord_functions = coord_sys.coord_functions()
    equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
                 for cf in coord_functions]
    init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
                 for cf in coord_functions]
    return equations, init_cond


###############################################################################
# Helpers
###############################################################################
def dummyfy(args, exprs):
    # TODO Is this a good idea?
    d_args = Matrix([s.as_dummy() for s in args])
    reps = dict(zip(args, d_args))
    d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs])
    return d_args, d_exprs

###############################################################################
# Helpers
###############################################################################
def contravariant_order(expr, _strict=False):
    """Return the contravariant order of an expression.

    Examples
    ========

    >>> from sympy.diffgeom import contravariant_order
    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.abc import a

    >>> contravariant_order(a)
    0
    >>> contravariant_order(a*R2.x + 2)
    0
    >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
    1

    """
    # TODO move some of this to class methods.
    # TODO rewrite using the .as_blah_blah methods
    if isinstance(expr, Add):
        orders = [contravariant_order(e) for e in expr.args]
        if len(set(orders)) != 1:
            raise ValueError('Misformed expression containing contravariant fields of varying order.')
        return orders[0]
    elif isinstance(expr, Mul):
        orders = [contravariant_order(e) for e in expr.args]
        not_zero = [o for o in orders if o != 0]
        if len(not_zero) > 1:
            raise ValueError('Misformed expression containing multiplication between vectors.')
        return 0 if not not_zero else not_zero[0]
    elif isinstance(expr, Pow):
        if covariant_order(expr.base) or covariant_order(expr.exp):
            raise ValueError(
                'Misformed expression containing a power of a vector.')
        return 0
    elif isinstance(expr, BaseVectorField):
        return 1
    elif isinstance(expr, TensorProduct):
        return sum(contravariant_order(a) for a in expr.args)
    elif not _strict or expr.atoms(BaseScalarField):
        return 0
    else:  # If it does not contain anything related to the diffgeom module and it is _strict
        return -1


def covariant_order(expr, _strict=False):
    """Return the covariant order of an expression.

    Examples
    ========

    >>> from sympy.diffgeom import covariant_order
    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.abc import a

    >>> covariant_order(a)
    0
    >>> covariant_order(a*R2.x + 2)
    0
    >>> covariant_order(a*R2.x*R2.dy + R2.dx)
    1

    """
    # TODO move some of this to class methods.
    # TODO rewrite using the .as_blah_blah methods
    if isinstance(expr, Add):
        orders = [covariant_order(e) for e in expr.args]
        if len(set(orders)) != 1:
            raise ValueError('Misformed expression containing form fields of varying order.')
        return orders[0]
    elif isinstance(expr, Mul):
        orders = [covariant_order(e) for e in expr.args]
        not_zero = [o for o in orders if o != 0]
        if len(not_zero) > 1:
            raise ValueError('Misformed expression containing multiplication between forms.')
        return 0 if not not_zero else not_zero[0]
    elif isinstance(expr, Pow):
        if covariant_order(expr.base) or covariant_order(expr.exp):
            raise ValueError(
                'Misformed expression containing a power of a form.')
        return 0
    elif isinstance(expr, Differential):
        return covariant_order(*expr.args) + 1
    elif isinstance(expr, TensorProduct):
        return sum(covariant_order(a) for a in expr.args)
    elif not _strict or expr.atoms(BaseScalarField):
        return 0
    else:  # If it does not contain anything related to the diffgeom module and it is _strict
        return -1


###############################################################################
# Coordinate transformation functions
###############################################################################
def vectors_in_basis(expr, to_sys):
    """Transform all base vectors in base vectors of a specified coord basis.
    While the new base vectors are in the new coordinate system basis, any
    coefficients are kept in the old system.

    Examples
    ========

    >>> from sympy.diffgeom import vectors_in_basis
    >>> from sympy.diffgeom.rn import R2_r, R2_p

    >>> vectors_in_basis(R2_r.e_x, R2_p)
    -y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
    >>> vectors_in_basis(R2_p.e_r, R2_r)
    sin(theta)*e_y + cos(theta)*e_x

    """
    vectors = list(expr.atoms(BaseVectorField))
    new_vectors = []
    for v in vectors:
        cs = v._coord_sys
        jac = cs.jacobian(to_sys, cs.coord_functions())
        new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
        new_vectors.append(new)
    return expr.subs(list(zip(vectors, new_vectors)))


###############################################################################
# Coordinate-dependent functions
###############################################################################
def twoform_to_matrix(expr):
    """Return the matrix representing the twoform.

    For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
    where `e_i` is the i-th base vector field for the coordinate system in
    which the expression of `w` is given.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
    >>> TP = TensorProduct

    >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    Matrix([
    [1, 0],
    [0, 1]])
    >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    Matrix([
    [x, 0],
    [0, 1]])
    >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
    Matrix([
    [   1, 0],
    [-1/2, 1]])

    """
    if covariant_order(expr) != 2 or contravariant_order(expr):
        raise ValueError('The input expression is not a two-form.')
    coord_sys = _find_coords(expr)
    if len(coord_sys) != 1:
        raise ValueError('The input expression concerns more than one '
                         'coordinate systems, hence there is no unambiguous '
                         'way to choose a coordinate system for the matrix.')
    coord_sys = coord_sys.pop()
    vectors = coord_sys.base_vectors()
    expr = expr.expand()
    matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
                      for v2 in vectors]
    return Matrix(matrix_content)


def metric_to_Christoffel_1st(expr):
    """Return the nested list of Christoffel symbols for the given metric.
    This returns the Christoffel symbol of first kind that represents the
    Levi-Civita connection for the given metric.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
    >>> TP = TensorProduct

    >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
    >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]

    """
    matrix = twoform_to_matrix(expr)
    if not matrix.is_symmetric():
        raise ValueError(
            'The two-form representing the metric is not symmetric.')
    coord_sys = _find_coords(expr).pop()
    deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()]
    indices = list(range(coord_sys.dim))
    christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
                     for k in indices]
                    for j in indices]
                   for i in indices]
    return ImmutableDenseNDimArray(christoffel)


def metric_to_Christoffel_2nd(expr):
    """Return the nested list of Christoffel symbols for the given metric.
    This returns the Christoffel symbol of second kind that represents the
    Levi-Civita connection for the given metric.

    Examples
    ========

    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
    >>> TP = TensorProduct

    >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
    >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]

    """
    ch_1st = metric_to_Christoffel_1st(expr)
    coord_sys = _find_coords(expr).pop()
    indices = list(range(coord_sys.dim))
    # XXX workaround, inverting a matrix does not work if it contains non
    # symbols
    #matrix = twoform_to_matrix(expr).inv()
    matrix = twoform_to_matrix(expr)
    s_fields = set()
    for e in matrix:
        s_fields.update(e.atoms(BaseScalarField))
    s_fields = list(s_fields)
    dums = coord_sys.symbols
    matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
    # XXX end of workaround
    christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
                     for k in indices]
                    for j in indices]
                   for i in indices]
    return ImmutableDenseNDimArray(christoffel)


def metric_to_Riemann_components(expr):
    """Return the components of the Riemann tensor expressed in a given basis.

    Given a metric it calculates the components of the Riemann tensor in the
    canonical basis of the coordinate system in which the metric expression is
    given.

    Examples
    ========

    >>> from sympy import exp
    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
    >>> TP = TensorProduct

    >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
    >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
        R2.r**2*TP(R2.dtheta, R2.dtheta)
    >>> non_trivial_metric
    exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
    >>> riemann = metric_to_Riemann_components(non_trivial_metric)
    >>> riemann[0, :, :, :]
    [[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]
    >>> riemann[1, :, :, :]
    [[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]

    """
    ch_2nd = metric_to_Christoffel_2nd(expr)
    coord_sys = _find_coords(expr).pop()
    indices = list(range(coord_sys.dim))
    deriv_ch = [[[[d(ch_2nd[i, j, k])
                   for d in coord_sys.base_vectors()]
                  for k in indices]
                 for j in indices]
                for i in indices]
    riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
                    for nu in indices]
                   for mu in indices]
                  for sig in indices]
                     for rho in indices]
    riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
                    for nu in indices]
                   for mu in indices]
                  for sig in indices]
                 for rho in indices]
    riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
                  for nu in indices]
                     for mu in indices]
                for sig in indices]
               for rho in indices]
    return ImmutableDenseNDimArray(riemann)


def metric_to_Ricci_components(expr):

    """Return the components of the Ricci tensor expressed in a given basis.

    Given a metric it calculates the components of the Ricci tensor in the
    canonical basis of the coordinate system in which the metric expression is
    given.

    Examples
    ========

    >>> from sympy import exp
    >>> from sympy.diffgeom.rn import R2
    >>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
    >>> TP = TensorProduct

    >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    [[0, 0], [0, 0]]
    >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
                             R2.r**2*TP(R2.dtheta, R2.dtheta)
    >>> non_trivial_metric
    exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
    >>> metric_to_Ricci_components(non_trivial_metric)
    [[1/rho, 0], [0, exp(-2*rho)*rho]]

    """
    riemann = metric_to_Riemann_components(expr)
    coord_sys = _find_coords(expr).pop()
    indices = list(range(coord_sys.dim))
    ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
              for j in indices]
             for i in indices]
    return ImmutableDenseNDimArray(ricci)

###############################################################################
# Classes for deprecation
###############################################################################

class _deprecated_container:
    # This class gives deprecation warning.
    # When deprecated features are completely deleted, this should be removed as well.
    # See https://github.com/sympy/sympy/pull/19368
    def __init__(self, message, data):
        super().__init__(data)
        self.message = message

    def warn(self):
        sympy_deprecation_warning(
            self.message,
            deprecated_since_version="1.7",
            active_deprecations_target="deprecated-diffgeom-mutable",
            stacklevel=4
        )

    def __iter__(self):
        self.warn()
        return super().__iter__()

    def __getitem__(self, key):
        self.warn()
        return super().__getitem__(key)

    def __contains__(self, key):
        self.warn()
        return super().__contains__(key)


class _deprecated_list(_deprecated_container, list):
    pass


class _deprecated_dict(_deprecated_container, dict):
    pass


# Import at end to avoid cyclic imports
from sympy.simplify.simplify import simplify