File size: 6,264 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""Predefined R^n manifolds together with common coord. systems.

Coordinate systems are predefined as well as the transformation laws between
them.

Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`),
as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by
using the usual `coord_sys.coord_function(index, name)` interface.
"""

from typing import Any
import warnings

from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
from .diffgeom import Manifold, Patch, CoordSystem

__all__ = [
    'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p',
    'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s'
]

###############################################################################
# R2
###############################################################################
R2: Any = Manifold('R^2', 2)

R2_origin: Any = Patch('origin', R2)

x, y = symbols('x y', real=True)
r, theta = symbols('rho theta', nonnegative=True)

relations_2d = {
    ('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
    ('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))],
}

R2_r: Any = CoordSystem('rectangular', R2_origin, (x, y), relations_2d)
R2_p: Any = CoordSystem('polar', R2_origin, (r, theta), relations_2d)

# support deprecated feature
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    x, y, r, theta = symbols('x y r theta', cls=Dummy)
    R2_r.connect_to(R2_p, [x, y],
                        [sqrt(x**2 + y**2), atan2(y, x)],
                    inverse=False, fill_in_gaps=False)
    R2_p.connect_to(R2_r, [r, theta],
                        [r*cos(theta), r*sin(theta)],
                    inverse=False, fill_in_gaps=False)

# Defining the basis coordinate functions and adding shortcuts for them to the
# manifold and the patch.
R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions()
R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions()

# Defining the basis vector fields and adding shortcuts for them to the
# manifold and the patch.
R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors()
R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors()

# Defining the basis oneform fields and adding shortcuts for them to the
# manifold and the patch.
R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms()
R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms()

###############################################################################
# R3
###############################################################################
R3: Any = Manifold('R^3', 3)

R3_origin: Any = Patch('origin', R3)

x, y, z = symbols('x y z', real=True)
rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True)

relations_3d = {
    ('rectangular', 'cylindrical'): [(x, y, z),
                                     (sqrt(x**2 + y**2), atan2(y, x), z)],
    ('cylindrical', 'rectangular'): [(rho, psi, z),
                                     (rho*cos(psi), rho*sin(psi), z)],
    ('rectangular', 'spherical'): [(x, y, z),
                                   (sqrt(x**2 + y**2 + z**2),
                                    acos(z/sqrt(x**2 + y**2 + z**2)),
                                    atan2(y, x))],
    ('spherical', 'rectangular'): [(r, theta, phi),
                                   (r*sin(theta)*cos(phi),
                                    r*sin(theta)*sin(phi),
                                    r*cos(theta))],
    ('cylindrical', 'spherical'): [(rho, psi, z),
                                   (sqrt(rho**2 + z**2),
                                    acos(z/sqrt(rho**2 + z**2)),
                                    psi)],
    ('spherical', 'cylindrical'): [(r, theta, phi),
                                   (r*sin(theta), phi, r*cos(theta))],
}

R3_r: Any = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d)
R3_c: Any = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d)
R3_s: Any = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d)

# support deprecated feature
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy)
    R3_r.connect_to(R3_c, [x, y, z],
                        [sqrt(x**2 + y**2), atan2(y, x), z],
                    inverse=False, fill_in_gaps=False)
    R3_c.connect_to(R3_r, [rho, psi, z],
                        [rho*cos(psi), rho*sin(psi), z],
                    inverse=False, fill_in_gaps=False)
    ## rectangular <-> spherical
    R3_r.connect_to(R3_s, [x, y, z],
                        [sqrt(x**2 + y**2 + z**2), acos(z/
                                sqrt(x**2 + y**2 + z**2)), atan2(y, x)],
                    inverse=False, fill_in_gaps=False)
    R3_s.connect_to(R3_r, [r, theta, phi],
                        [r*sin(theta)*cos(phi), r*sin(
                            theta)*sin(phi), r*cos(theta)],
                    inverse=False, fill_in_gaps=False)
    ## cylindrical <-> spherical
    R3_c.connect_to(R3_s, [rho, psi, z],
                        [sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi],
                    inverse=False, fill_in_gaps=False)
    R3_s.connect_to(R3_c, [r, theta, phi],
                        [r*sin(theta), phi, r*cos(theta)],
                    inverse=False, fill_in_gaps=False)

# Defining the basis coordinate functions.
R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions()
R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions()
R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions()

# Defining the basis vector fields.
R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors()
R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors()
R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors()

# Defining the basis oneform fields.
R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms()
R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms()
R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()