Spaces:
Sleeping
Sleeping
File size: 42,908 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 |
from math import prod
from sympy.core import Add, S, Dummy, expand_func
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, PoleError
from sympy.core.logic import fuzzy_and, fuzzy_not
from sympy.core.numbers import Rational, pi, oo, I
from sympy.core.power import Pow
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.error_functions import erf, erfc, Ei
from sympy.functions.elementary.complexes import re, unpolarify
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
from sympy.utilities.misc import as_int
from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps
def intlike(n):
try:
as_int(n, strict=False)
return True
except ValueError:
return False
###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################
class gamma(Function):
r"""
The gamma function
.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
Explanation
===========
The ``gamma`` function implements the function which passes through the
values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is
an integer). More generally, $\Gamma(z)$ is defined in the whole complex
plane except at the negative integers where there are simple poles.
Examples
========
>>> from sympy import S, I, pi, gamma
>>> from sympy.abc import x
Several special values are known:
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2
The ``gamma`` function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the ``gamma`` function to arbitrary precision
on the whole complex plane:
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
See Also
========
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] https://dlmf.nist.gov/5
.. [3] https://mathworld.wolfram.com/GammaFunction.html
.. [4] https://functions.wolfram.com/GammaBetaErf/Gamma/
"""
unbranched = True
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
if argindex == 1:
return self.func(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is oo:
return oo
elif intlike(arg):
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q
if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1
if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne
coeff *= prod(range(3, 2*k, 2))
if arg.is_positive:
return coeff*sqrt(pi) / 2**n
else:
return 2**n*sqrt(pi) / coeff
def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
if arg.is_Add:
coeff, tail = arg.as_coeff_add()
if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return self.func(tail)*RisingFactorial(tail, coeff)
return self.func(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
x = self.args[0]
if x.is_nonpositive and x.is_integer:
return False
if intlike(x) and x <= 0:
return False
if x.is_positive or x.is_noninteger:
return True
def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return exp(loggamma(z))
def _eval_rewrite_as_factorial(self, z, **kwargs):
return factorial(z - 1)
def _eval_nseries(self, x, n, logx, cdir=0):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super()._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0)
if x0.is_integer and x0.is_nonpositive:
n = -x0
res = S.NegativeOne**n/self.func(n + 1)
return res/(arg + n).as_leading_term(x)
elif not x0.is_infinite:
return self.func(x0)
raise PoleError()
###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################
class lowergamma(Function):
r"""
The lower incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
This can be shown to be the same as
.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
Examples
========
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] https://dlmf.nist.gov/8
.. [4] https://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] https://functions.wolfram.com/GammaBetaErf/Gamma3/
"""
def fdiff(self, argindex=2):
from sympy.functions.special.hyper import meijerg
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
# function of x.
# 3) For fixed non-positive integers s,
# lowergamma(s, exp(I*2*pi*n)*x) =
# 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
# (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
# lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
# where lowergamma_unbranched(s, x) is an entire function (in fact
# of both s and x), i.e.
# lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
if x is S.Zero:
return S.Zero
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
else:
return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)]))
if not a.is_Integer:
return S.NegativeOne**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)])
if x.is_zero:
return S.Zero
def _eval_evalf(self, prec):
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)
else:
return self
def _eval_conjugate(self):
x = self.args[1]
if x not in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), x.conjugate())
def _eval_is_meromorphic(self, x, a):
# By https://en.wikipedia.org/wiki/Incomplete_gamma_function#Holomorphic_extension,
# lowergamma(s, z) = z**s*gamma(s)*gammastar(s, z),
# where gammastar(s, z) is holomorphic for all s and z.
# Hence the singularities of lowergamma are z = 0 (branch
# point) and nonpositive integer values of s (poles of gamma(s)).
s, z = self.args
args_merom = fuzzy_and([z._eval_is_meromorphic(x, a),
s._eval_is_meromorphic(x, a)])
if not args_merom:
return args_merom
z0 = z.subs(x, a)
if s.is_integer:
return fuzzy_and([s.is_positive, z0.is_finite])
s0 = s.subs(x, a)
return fuzzy_and([s0.is_finite, z0.is_finite, fuzzy_not(z0.is_zero)])
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import O
s, z = self.args
if args0[0] is oo and not z.has(x):
coeff = z**s*exp(-z)
sum_expr = sum(z**k/rf(s, k + 1) for k in range(n - 1))
o = O(z**s*s**(-n))
return coeff*sum_expr + o
return super()._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
return gamma(s) - uppergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy.functions.special.error_functions import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)
def _eval_is_zero(self):
x = self.args[1]
if x.is_zero:
return True
class uppergamma(Function):
r"""
The upper incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
where $\gamma(s, x)$ is the lower incomplete gamma function,
:class:`lowergamma`. This can be shown to be the same as
.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:
.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
Examples
========
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] https://dlmf.nist.gov/8
.. [4] https://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] https://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""
def fdiff(self, argindex=2):
from sympy.functions.special.hyper import meijerg
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)
return self
@classmethod
def eval(cls, a, z):
from sympy.functions.special.error_functions import expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is oo:
return S.Zero
elif z.is_zero:
if re(a).is_positive:
return gamma(a)
# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return -2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.Zero and z.is_positive:
return -Ei(-z)
elif a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return exp(-z) * factorial(b) * Add(*[z**k / factorial(k)
for k in range(a)])
else:
return (gamma(a) * erfc(sqrt(z)) +
S.NegativeOne**(a - S(3)/2) * exp(-z) * sqrt(z)
* Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a)
for k in range(a - S.Half)]))
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)
if not a.is_Integer:
return (S.NegativeOne**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a)
- z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1)
for k in range(S.Half - a)]))
if a.is_zero and z.is_positive:
return -Ei(-z)
if z.is_zero and re(a).is_positive:
return gamma(a)
def _eval_conjugate(self):
z = self.args[1]
if z not in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_is_meromorphic(self, x, a):
return lowergamma._eval_is_meromorphic(self, x, a)
def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
return gamma(s) - lowergamma(s, x)
def _eval_rewrite_as_tractable(self, s, x, **kwargs):
return exp(loggamma(s)) - lowergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy.functions.special.error_functions import expint
return expint(1 - s, x)*x**s
###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################
class polygamma(Function):
r"""
The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
Explanation
===========
It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th
derivative of the logarithm of the gamma function:
.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
For `n` not a nonnegative integer the generalization by Espinosa and Moll [5]_
is used:
.. math:: \psi(s,z) = \frac{\zeta'(s+1, z) + (\gamma + \psi(-s)) \zeta(s+1, z)}
{\Gamma(-s)}
Examples
========
Several special values are known:
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
1 - EulerGamma
>>> polygamma(0, 23)
19093197/5173168 - EulerGamma
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo
Differentiation with respect to $x$ is supported:
>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)
>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)
We can rewrite ``polygamma`` functions in terms of harmonic numbers:
>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Polygamma_function
.. [2] https://mathworld.wolfram.com/PolygammaFunction.html
.. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
.. [5] O. Espinosa and V. Moll, "A generalized polygamma function",
*Integral Transforms and Special Functions* (2004), 101-115.
"""
@classmethod
def eval(cls, n, z):
if n is S.NaN or z is S.NaN:
return S.NaN
elif z is oo:
return oo if n.is_zero else S.Zero
elif z.is_Integer and z.is_nonpositive:
return S.ComplexInfinity
elif n is S.NegativeOne:
return loggamma(z) - log(2*pi) / 2
elif n.is_zero:
if z is -oo or z.extract_multiplicatively(I) in (oo, -oo):
return oo
elif z.is_Integer:
return harmonic(z-1) - S.EulerGamma
elif z.is_Rational:
# TODO n == 1 also can do some rational z
p, q = z.as_numer_denom()
# only expand for small denominators to avoid creating long expressions
if q <= 6:
return expand_func(polygamma(S.Zero, z, evaluate=False))
elif n.is_integer and n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)
if z.is_Integer:
return S.NegativeOne**(n+1) * factorial(n) * zeta(n+1, z)
elif z is S.Half:
return S.NegativeOne**(n+1) * factorial(n) * (2**(n+1)-1) * zeta(n+1)
def _eval_is_real(self):
if self.args[0].is_positive and self.args[1].is_positive:
return True
def _eval_is_complex(self):
z = self.args[1]
is_negative_integer = fuzzy_and([z.is_negative, z.is_integer])
return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)])
def _eval_is_positive(self):
n, z = self.args
if n.is_positive:
if n.is_odd and z.is_real:
return True
if n.is_even and z.is_positive:
return False
def _eval_is_negative(self):
n, z = self.args
if n.is_positive:
if n.is_even and z.is_positive:
return True
if n.is_odd and z.is_real:
return False
def _eval_expand_func(self, **hints):
n, z = self.args
if n.is_Integer and n.is_nonnegative:
if z.is_Add:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
tail = Add(*[Pow(
z - i, e) for i in range(1, int(coeff) + 1)])
else:
tail = -Add(*[Pow(
z + i, e) for i in range(int(-coeff))])
return polygamma(n, z - coeff) + S.NegativeOne**n*factorial(n)*tail
elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [polygamma(n, z + Rational(
i, coeff)) for i in range(int(coeff))]
if n == 0:
return Add(*tail)/coeff + log(coeff)
else:
return Add(*tail)/coeff**(n + 1)
z *= coeff
if n == 0 and z.is_Rational:
p, q = z.as_numer_denom()
# Reference:
# Values of the polygamma functions at rational arguments, J. Choi, 2007
part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
*[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
if z > 0:
n = floor(z)
z0 = z - n
return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
if n == -1:
return loggamma(z) - log(2*pi) / 2
if n.is_integer is False or n.is_nonnegative is False:
s = Dummy("s")
dzt = zeta(s, z).diff(s).subs(s, n+1)
return (dzt + (S.EulerGamma + digamma(-n)) * zeta(n+1, z)) / gamma(-n)
return polygamma(n, z)
def _eval_rewrite_as_zeta(self, n, z, **kwargs):
if n.is_integer and n.is_positive:
return S.NegativeOne**(n + 1)*factorial(n)*zeta(n + 1, z)
def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
if n.is_integer:
if n.is_zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
logx = log(x) if logx is None else logx
return o.getn() * logx
else:
return self.func(n, z)
def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super()._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]
if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
r -= Add(*l)
o = Order(1/z**n, x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
# quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
def _eval_evalf(self, prec):
if not all(i.is_number for i in self.args):
return
s = self.args[0]._to_mpmath(prec+12)
z = self.args[1]._to_mpmath(prec+12)
if mp.isint(z) and z <= 0:
return S.ComplexInfinity
with workprec(prec+12):
if mp.isint(s) and s >= 0:
res = mp.polygamma(s, z)
else:
zt = mp.zeta(s+1, z)
dzt = mp.zeta(s+1, z, 1)
res = (dzt + (mp.euler + mp.digamma(-s)) * zt) * mp.rgamma(-s)
return Expr._from_mpmath(res, prec)
class loggamma(Function):
r"""
The ``loggamma`` function implements the logarithm of the
gamma function (i.e., $\log\Gamma(x)$).
Examples
========
Several special values are known. For numerical integral
arguments we have:
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
And for symbolic values:
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
For half-integral values:
>>> from sympy import S
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
And general rational arguments:
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The ``loggamma`` function has the following limits towards infinity:
>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo
The ``loggamma`` function obeys the mirror symmetry
if $x \in \mathbb{C} \setminus \{-\infty, 0\}$:
>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(loggamma(x), x, 0, 4).cancel()
-log(x) - EulerGamma*x + pi**2*x**2/12 - x**3*zeta(3)/3 + O(x**4)
We can numerically evaluate the ``loggamma`` function
to arbitrary precision on the whole complex plane:
>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] https://dlmf.nist.gov/5
.. [3] https://mathworld.wolfram.com/LogGammaFunction.html
.. [4] https://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
if z.is_integer:
if z.is_nonpositive:
return oo
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
if z is oo:
return oo
elif abs(z) is oo:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN
def _eval_expand_func(self, **hints):
from sympy.concrete.summations import Sum
z = self.args[0]
if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + pi*I*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)
return self
def _eval_nseries(self, x, n, logx=None, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
if args0[0] != oo:
return super()._eval_aseries(n, args0, x, logx)
z = self.args[0]
r = log(z)*(z - S.Half) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, n)]
o = None
if n == 0:
o = Order(1, x)
else:
o = Order(1/z**n, x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o
def _eval_rewrite_as_intractable(self, z, **kwargs):
return log(gamma(z))
def _eval_is_real(self):
z = self.args[0]
if z.is_positive:
return True
elif z.is_nonpositive:
return False
def _eval_conjugate(self):
z = self.args[0]
if z not in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())
def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
class digamma(Function):
r"""
The ``digamma`` function is the first derivative of the ``loggamma``
function
.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }.
In this case, ``digamma(z) = polygamma(0, z)``.
Examples
========
>>> from sympy import digamma
>>> digamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> digamma(z)
polygamma(0, z)
To retain ``digamma`` as it is:
>>> digamma(0, evaluate=False)
digamma(0)
>>> digamma(z, evaluate=False)
digamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Digamma_function
.. [2] https://mathworld.wolfram.com/DigammaFunction.html
.. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
nprec = prec_to_dps(prec)
return polygamma(0, z).evalf(n=nprec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(0, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(0, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(0, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(0, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.Zero,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(0, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(0, z).expand(func=True)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return harmonic(z - 1) - S.EulerGamma
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(0, z)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
z = self.args[0]
return polygamma(0, z).as_leading_term(x)
class trigamma(Function):
r"""
The ``trigamma`` function is the second derivative of the ``loggamma``
function
.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
In this case, ``trigamma(z) = polygamma(1, z)``.
Examples
========
>>> from sympy import trigamma
>>> trigamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> trigamma(z)
polygamma(1, z)
To retain ``trigamma`` as it is:
>>> trigamma(0, evaluate=False)
trigamma(0)
>>> trigamma(z, evaluate=False)
trigamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigamma_function
.. [2] https://mathworld.wolfram.com/TrigammaFunction.html
.. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
nprec = prec_to_dps(prec)
return polygamma(1, z).evalf(n=nprec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(1, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(1, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(1, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(1, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.One,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(1, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(1, z).expand(func=True)
def _eval_rewrite_as_zeta(self, z, **kwargs):
return zeta(2, z)
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(1, z)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return -harmonic(z - 1, 2) + pi**2 / 6
def _eval_as_leading_term(self, x, logx=None, cdir=0):
z = self.args[0]
return polygamma(1, z).as_leading_term(x)
###############################################################################
##################### COMPLETE MULTIVARIATE GAMMA FUNCTION ####################
###############################################################################
class multigamma(Function):
r"""
The multivariate gamma function is a generalization of the gamma function
.. math::
\Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].
In a special case, ``multigamma(x, 1) = gamma(x)``.
Examples
========
>>> from sympy import S, multigamma
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> p = Symbol('p', positive=True, integer=True)
>>> multigamma(x, p)
pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
Several special values are known:
>>> multigamma(1, 1)
1
>>> multigamma(4, 1)
6
>>> multigamma(S(3)/2, 1)
sqrt(pi)/2
Writing ``multigamma`` in terms of the ``gamma`` function:
>>> multigamma(x, 1)
gamma(x)
>>> multigamma(x, 2)
sqrt(pi)*gamma(x)*gamma(x - 1/2)
>>> multigamma(x, 3)
pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
Parameters
==========
p : order or dimension of the multivariate gamma function
See Also
========
gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma,
sympy.functions.special.beta_functions.beta
References
==========
.. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function
"""
unbranched = True
def fdiff(self, argindex=2):
from sympy.concrete.summations import Sum
if argindex == 2:
x, p = self.args
k = Dummy("k")
return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, p):
from sympy.concrete.products import Product
if p.is_positive is False or p.is_integer is False:
raise ValueError('Order parameter p must be positive integer.')
k = Dummy("k")
return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2),
(k, 1, p))).doit()
def _eval_conjugate(self):
x, p = self.args
return self.func(x.conjugate(), p)
def _eval_is_real(self):
x, p = self.args
y = 2*x
if y.is_integer and (y <= (p - 1)) is True:
return False
if intlike(y) and (y <= (p - 1)):
return False
if y > (p - 1) or y.is_noninteger:
return True
|