File size: 52,047 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
"""
Algorithms for solving Parametric Risch Differential Equations.

The methods used for solving Parametric Risch Differential Equations parallel
those for solving Risch Differential Equations.  See the outline in the
docstring of rde.py for more information.

The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in
K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such
that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist.

For the algorithms here G is a list of tuples of factions of the terms on the
right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on
the right hand side of the equation (i.e., qi in k[t]).  See the docstring of
each function for more information.
"""
import itertools
from functools import reduce

from sympy.core.intfunc import ilcm
from sympy.core import Dummy, Add, Mul, Pow, S
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
    bound_degree)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    residue_reduce, splitfactor, residue_reduce_derivation, DecrementLevel,
    recognize_log_derivative)
from sympy.polys import Poly, lcm, cancel, sqf_list
from sympy.polys.polymatrix import PolyMatrix as Matrix
from sympy.solvers import solve

zeros = Matrix.zeros
eye = Matrix.eye


def prde_normal_denom(fa, fd, G, DE):
    """
    Parametric Risch Differential Equation - Normal part of the denominator.

    Explanation
    ===========

    Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly
    normalized with respect to t, return the tuple (a, b, G, h) such that
    a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution
    c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)),
    q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)).
    """
    dn, ds = splitfactor(fd, DE)
    Gas, Gds = list(zip(*G))
    gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t))
    en, es = splitfactor(gd, DE)

    p = dn.gcd(en)
    h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))

    a = dn*h
    c = a*h

    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)

    G = [(c*A).cancel(D, include=True) for A, D in G]

    return (a, (ba, bd), G, h)

def real_imag(ba, bd, gen):
    """
    Helper function, to get the real and imaginary part of a rational function
    evaluated at sqrt(-1) without actually evaluating it at sqrt(-1).

    Explanation
    ===========

    Separates the even and odd power terms by checking the degree of terms wrt
    mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part
    of the numerator ba[1] is the imaginary part and bd is the denominator
    of the rational function.
    """
    bd = bd.as_poly(gen).as_dict()
    ba = ba.as_poly(gen).as_dict()
    denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()]
    denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()]
    bd_real = sum(r for r in denom_real)
    bd_imag = sum(r for r in denom_imag)
    num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()]
    num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()]
    ba_real = sum(r for r in num_real)
    ba_imag = sum(r for r in num_imag)
    ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen))
    bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen)
    return (ba[0], ba[1], bd)


def prde_special_denom(a, ba, bd, G, DE, case='auto'):
    """
    Parametric Risch Differential Equation - Special part of the denominator.

    Explanation
    ===========

    Case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
    hypertangent, and primitive cases, respectively.  For the hyperexponential
    (resp. hypertangent) case, given a derivation D on k[t] and a in k[t],
    b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in
    k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
    gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in
    k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in
    Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in
    k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)).

    For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this
    case.
    """
    # TODO: Merge this with the very similar special_denom() in rde.py
    if case == 'auto':
        case = DE.case

    if case == 'exp':
        p = Poly(DE.t, DE.t)
    elif case == 'tan':
        p = Poly(DE.t**2 + 1, DE.t)
    elif case in ('primitive', 'base'):
        B = ba.quo(bd)
        return (a, B, G, Poly(1, DE.t))
    else:
        raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
            "'base'}, not %s." % case)

    nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
    nc = min(order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G)
    n = min(0, nc - min(0, nb))
    if not nb:
        # Possible cancellation.
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
                etaa, etad = frac_in(dcoeff, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    Q, m, z = A
                    if Q == 1:
                        n = min(n, m)

        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                betaa, alphaa, alphad =  real_imag(ba, bd*a, DE.t)
                betad = alphad
                etaa, etad = frac_in(dcoeff, DE.t)
                if recognize_log_derivative(Poly(2, DE.t)*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                    B = parametric_log_deriv(betaa, betad, etaa, etad, DE)
                    if A is not None and B is not None:
                        Q, s, z = A
                        # TODO: Add test
                        if Q == 1:
                            n = min(n, s/2)

    N = max(0, -nb)
    pN = p**N
    pn = p**-n  # This is 1/h

    A = a*pN
    B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
    G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
    h = pn

    # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
    return (A, B, G, h)


def prde_linear_constraints(a, b, G, DE):
    """
    Parametric Risch Differential Equation - Generate linear constraints on the constants.

    Explanation
    ===========

    Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and
    G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a
    matrix M with entries in k(t) such that for any solution c1, ..., cm in
    Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)),
    (c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy
    a*Dp + b*p == Sum(ci*qi, (i, 1, m)).

    Because M has entries in k(t), and because Matrix does not play well with
    Poly, M will be a Matrix of Basic expressions.
    """
    m = len(G)

    Gns, Gds = list(zip(*G))
    d = reduce(lambda i, j: i.lcm(j), Gds)
    d = Poly(d, field=True)
    Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G]

    if not all(ri.is_zero for _, ri in Q):
        N = max(ri.degree(DE.t) for _, ri in Q)
        M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i), DE.t)
    else:
        M = Matrix(0, m, [], DE.t)  # No constraints, return the empty matrix.

    qs, _ = list(zip(*Q))
    return (qs, M)

def poly_linear_constraints(p, d):
    """
    Given p = [p1, ..., pm] in k[t]^m and d in k[t], return
    q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k such
    that Sum(ci*pi, (i, 1, m)), for c1, ..., cm in k, is divisible
    by d if and only if (c1, ..., cm) is a solution of Mx = 0, in
    which case the quotient is Sum(ci*qi, (i, 1, m)).
    """
    m = len(p)
    q, r = zip(*[pi.div(d) for pi in p])

    if not all(ri.is_zero for ri in r):
        n = max(ri.degree() for ri in r)
        M = Matrix(n + 1, m, lambda i, j: r[j].nth(i), d.gens)
    else:
        M = Matrix(0, m, [], d.gens)  # No constraints.

    return q, M

def constant_system(A, u, DE):
    """
    Generate a system for the constant solutions.

    Explanation
    ===========

    Given a differential field (K, D) with constant field C = Const(K), a Matrix
    A, and a vector (Matrix) u with coefficients in K, returns the tuple
    (B, v, s), where B is a Matrix with coefficients in C and v is a vector
    (Matrix) such that either v has coefficients in C, in which case s is True
    and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
    or v has a non-constant coefficient, in which case s is False Ax == u has no
    constant solution.

    This algorithm is used both in solving parametric problems and in
    determining if an element a of K is a derivative of an element of K or the
    logarithmic derivative of a K-radical using the structure theorem approach.

    Because Poly does not play well with Matrix yet, this algorithm assumes that
    all matrix entries are Basic expressions.
    """
    if not A:
        return A, u
    Au = A.row_join(u)
    Au, _ = Au.rref()
    # Warning: This will NOT return correct results if cancel() cannot reduce
    # an identically zero expression to 0.  The danger is that we might
    # incorrectly prove that an integral is nonelementary (such as
    # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
    # But this is a limitation in computer algebra in general, and implicit
    # in the correctness of the Risch Algorithm is the computability of the
    # constant field (actually, this same correctness problem exists in any
    # algorithm that uses rref()).
    #
    # We therefore limit ourselves to constant fields that are computable
    # via the cancel() function, in order to prevent a speed bottleneck from
    # calling some more complex simplification function (rational function
    # coefficients will fall into this class).  Furthermore, (I believe) this
    # problem will only crop up if the integral explicitly contains an
    # expression in the constant field that is identically zero, but cannot
    # be reduced to such by cancel().  Therefore, a careful user can avoid this
    # problem entirely by being careful with the sorts of expressions that
    # appear in his integrand in the variables other than the integration
    # variable (the structure theorems should be able to completely decide these
    # problems in the integration variable).

    A, u = Au[:, :-1], Au[:, -1]

    D = lambda x: derivation(x, DE, basic=True)

    for j, i in itertools.product(range(A.cols), range(A.rows)):
        if A[i, j].expr.has(*DE.T):
            # This assumes that const(F(t0, ..., tn) == const(K) == F
            Ri = A[i, :]
            # Rm+1; m = A.rows
            DAij = D(A[i, j])
            Rm1 = Ri.applyfunc(lambda x: D(x) / DAij)
            um1 = D(u[i]) / DAij

            Aj = A[:, j]
            A = A - Aj * Rm1
            u = u - Aj * um1

            A = A.col_join(Rm1)
            u = u.col_join(Matrix([um1], u.gens))

    return (A, u)


def prde_spde(a, b, Q, n, DE):
    """
    Special Polynomial Differential Equation algorithm: Parametric Version.

    Explanation
    ===========

    Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
    with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
    Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
    c1, ..., cm in Const(k) and q in k[t] of degree at most n of
    a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
    degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
    """
    R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q]))

    A = a
    B = b + derivation(a, DE)
    Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
    R = list(R)
    n1 = n - a.degree(DE.t)

    return (A, B, Qq, R, n1)


def prde_no_cancel_b_large(b, Q, n, DE):
    """
    Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough.

    Explanation
    ===========

    Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
    b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns
    h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
    if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
    Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where
    d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
    """
    db = b.degree(DE.t)
    m = len(Q)
    H = [Poly(0, DE.t)]*m

    for N, i in itertools.product(range(n, -1, -1), range(m)):  # [n, ..., 0]
        si = Q[i].nth(N + db)/b.LC()
        sitn = Poly(si*DE.t**N, DE.t)
        H[i] = H[i] + sitn
        Q[i] = Q[i] - derivation(sitn, DE) - b*sitn

    if all(qi.is_zero for qi in Q):
        dc = -1
    else:
        dc = max(qi.degree(DE.t) for qi in Q)
    M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t)
    A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE)
    c = eye(m, DE.t)
    A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c))

    return (H, A)


def prde_no_cancel_b_small(b, Q, n, DE):
    """
    Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough.

    Explanation
    ===========

    Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
    deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns
    h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
    if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
    Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where
    d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
    """
    m = len(Q)
    H = [Poly(0, DE.t)]*m

    for N, i in itertools.product(range(n, 0, -1), range(m)):  # [n, ..., 1]
        si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC())
        sitn = Poly(si*DE.t**N, DE.t)
        H[i] = H[i] + sitn
        Q[i] = Q[i] - derivation(sitn, DE) - b*sitn

    if b.degree(DE.t) > 0:
        for i in range(m):
            si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t)
            H[i] = H[i] + si
            Q[i] = Q[i] - derivation(si, DE) - b*si
        if all(qi.is_zero for qi in Q):
            dc = -1
        else:
            dc = max(qi.degree(DE.t) for qi in Q)
        M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t)
        A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE)
        c = eye(m, DE.t)
        A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c))
        return (H, A)

    # else: b is in k, deg(qi) < deg(Dt)

    t = DE.t
    if DE.case != 'base':
        with DecrementLevel(DE):
            t0 = DE.t  # k = k0(t0)
            ba, bd = frac_in(b, t0, field=True)
            Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q]
            f, B = param_rischDE(ba, bd, Q0, DE)

            # f = [f1, ..., fr] in k^r and B is a matrix with
            # m + r columns and entries in Const(k) = Const(k0)
            # such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has
            # a solution y0 in k with c1, ..., cm in Const(k)
            # if and only y0 = Sum(dj*fj, (j, 1, r)) where
            # d1, ..., dr ar in Const(k) and
            # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0.

        # Transform fractions (fa, fd) in f into constant
        # polynomials fa/fd in k[t].
        # (Is there a better way?)
        f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True)
             for fa, fd in f]
        B = Matrix.from_Matrix(B.to_Matrix(), t)
    else:
        # Base case. Dy == 0 for all y in k and b == 0.
        # Dy + b*y = Sum(ci*qi) is solvable if and only if
        # Sum(ci*qi) == 0 in which case the solutions are
        # y = d1*f1 for f1 = 1 and any d1 in Const(k) = k.

        f = [Poly(1, t, field=True)]  # r = 1
        B = Matrix([[qi.TC() for qi in Q] + [S.Zero]], DE.t)
        # The condition for solvability is
        # B*Matrix([c1, ..., cm, d1]) == 0
        # There are no constraints on d1.

    # Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero.
    d = max(qi.degree(DE.t) for qi in Q)
    if d > 0:
        M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1), DE.t)
        A, _ = constant_system(M, zeros(d, 1, DE.t), DE)
    else:
        # No constraints on the hj.
        A = Matrix(0, m, [], DE.t)

    # Solutions of the original equation are
    #    y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)),
    # where  ei == ci  (i = 1, ..., m),  when
    # A*Matrix([c1, ..., cm]) == 0 and
    # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0

    # Build combined constraint matrix with m + r + m columns.

    r = len(f)
    I = eye(m, DE.t)
    A = A.row_join(zeros(A.rows, r + m, DE.t))
    B = B.row_join(zeros(B.rows, m, DE.t))
    C = I.row_join(zeros(m, r, DE.t)).row_join(-I)

    return f + H, A.col_join(B).col_join(C)


def prde_cancel_liouvillian(b, Q, n, DE):
    """
    Pg, 237.
    """
    H = []

    # Why use DecrementLevel? Below line answers that:
    # Assuming that we can solve such problems over 'k' (not k[t])
    if DE.case == 'primitive':
        with DecrementLevel(DE):
            ba, bd = frac_in(b, DE.t, field=True)

    for i in range(n, -1, -1):
        if DE.case == 'exp': # this re-checking can be avoided
            with DecrementLevel(DE):
                ba, bd = frac_in(b + (i*(derivation(DE.t, DE)/DE.t)).as_poly(b.gens),
                                DE.t, field=True)
        with DecrementLevel(DE):
            Qy = [frac_in(q.nth(i), DE.t, field=True) for q in Q]
            fi, Ai = param_rischDE(ba, bd, Qy, DE)
        fi = [Poly(fa.as_expr()/fd.as_expr(), DE.t, field=True)
                for fa, fd in fi]
        Ai = Ai.set_gens(DE.t)

        ri = len(fi)

        if i == n:
            M = Ai
        else:
            M = Ai.col_join(M.row_join(zeros(M.rows, ri, DE.t)))

        Fi, hi = [None]*ri, [None]*ri

        # from eq. on top of p.238 (unnumbered)
        for j in range(ri):
            hji = fi[j] * (DE.t**i).as_poly(fi[j].gens)
            hi[j] = hji
            # building up Sum(djn*(D(fjn*t^n) - b*fjnt^n))
            Fi[j] = -(derivation(hji, DE) - b*hji)

        H += hi
        # in the next loop instead of Q it has
        # to be Q + Fi taking its place
        Q = Q + Fi

    return (H, M)


def param_poly_rischDE(a, b, q, n, DE):
    """Polynomial solutions of a parametric Risch differential equation.

    Explanation
    ===========

    Given a derivation D in k[t], a, b in k[t] relatively prime, and q
    = [q1, ..., qm] in k[t]^m, return h = [h1, ..., hr] in k[t]^r and
    a matrix A with m + r columns and entries in Const(k) such that
    a*Dp + b*p = Sum(ci*qi, (i, 1, m)) has a solution p of degree <= n
    in k[t] with c1, ..., cm in Const(k) if and only if p = Sum(dj*hj,
    (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
    d1, ..., dr) is a solution of Ax == 0.
    """
    m = len(q)
    if n < 0:
        # Only the trivial zero solution is possible.
        # Find relations between the qi.
        if all(qi.is_zero for qi in q):
            return [], zeros(1, m, DE.t)  # No constraints.

        N = max(qi.degree(DE.t) for qi in q)
        M = Matrix(N + 1, m, lambda i, j: q[j].nth(i), DE.t)
        A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)

        return [], A

    if a.is_ground:
        # Normalization: a = 1.
        a = a.LC()
        b, q = b.quo_ground(a), [qi.quo_ground(a) for qi in q]

        if not b.is_zero and (DE.case == 'base' or
                b.degree() > max(0, DE.d.degree() - 1)):
            return prde_no_cancel_b_large(b, q, n, DE)

        elif ((b.is_zero or b.degree() < DE.d.degree() - 1)
                and (DE.case == 'base' or DE.d.degree() >= 2)):
            return prde_no_cancel_b_small(b, q, n, DE)

        elif (DE.d.degree() >= 2 and
              b.degree() == DE.d.degree() - 1 and
              n > -b.as_poly().LC()/DE.d.as_poly().LC()):
            raise NotImplementedError("prde_no_cancel_b_equal() is "
                "not yet implemented.")

        else:
            # Liouvillian cases
            if DE.case in ('primitive', 'exp'):
                return prde_cancel_liouvillian(b, q, n, DE)
            else:
                raise NotImplementedError("non-linear and hypertangent "
                        "cases have not yet been implemented")

    # else: deg(a) > 0

    # Iterate SPDE as long as possible cumulating coefficient
    # and terms for the recovery of original solutions.
    alpha, beta = a.one, [a.zero]*m
    while n >= 0:  # and a, b relatively prime
        a, b, q, r, n = prde_spde(a, b, q, n, DE)
        beta = [betai + alpha*ri for betai, ri in zip(beta, r)]
        alpha *= a
        # Solutions p of a*Dp + b*p = Sum(ci*qi) correspond to
        # solutions alpha*p + Sum(ci*betai) of the initial equation.
        d = a.gcd(b)
        if not d.is_ground:
            break

    # a*Dp + b*p = Sum(ci*qi) may have a polynomial solution
    # only if the sum is divisible by d.

    qq, M = poly_linear_constraints(q, d)
    # qq = [qq1, ..., qqm] where qqi = qi.quo(d).
    # M is a matrix with m columns an entries in k.
    # Sum(fi*qi, (i, 1, m)), where f1, ..., fm are elements of k, is
    # divisible by d if and only if M*Matrix([f1, ..., fm]) == 0,
    # in which case the quotient is Sum(fi*qqi).

    A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)
    # A is a matrix with m columns and entries in Const(k).
    # Sum(ci*qqi) is Sum(ci*qi).quo(d), and the remainder is zero
    # for c1, ..., cm in Const(k) if and only if
    # A*Matrix([c1, ...,cm]) == 0.

    V = A.nullspace()
    # V = [v1, ..., vu] where each vj is a column matrix with
    # entries aj1, ..., ajm in Const(k).
    # Sum(aji*qi) is divisible by d with exact quotient Sum(aji*qqi).
    # Sum(ci*qi) is divisible by d if and only if ci = Sum(dj*aji)
    # (i = 1, ..., m) for some d1, ..., du in Const(k).
    # In that case, solutions of
    #     a*Dp + b*p = Sum(ci*qi) = Sum(dj*Sum(aji*qi))
    # are the same as those of
    #     (a/d)*Dp + (b/d)*p = Sum(dj*rj)
    # where rj = Sum(aji*qqi).

    if not V:  # No non-trivial solution.
        return [], eye(m, DE.t)  # Could return A, but this has
                                 # the minimum number of rows.

    Mqq = Matrix([qq])  # A single row.
    r = [(Mqq*vj)[0] for vj in V]  # [r1, ..., ru]

    # Solutions of (a/d)*Dp + (b/d)*p = Sum(dj*rj) correspond to
    # solutions alpha*p + Sum(Sum(dj*aji)*betai) of the initial
    # equation. These are equal to alpha*p + Sum(dj*fj) where
    # fj = Sum(aji*betai).
    Mbeta = Matrix([beta])
    f = [(Mbeta*vj)[0] for vj in V]  # [f1, ..., fu]

    #
    # Solve the reduced equation recursively.
    #
    g, B = param_poly_rischDE(a.quo(d), b.quo(d), r, n, DE)

    # g = [g1, ..., gv] in k[t]^v and and B is a matrix with u + v
    # columns and entries in Const(k) such that
    # (a/d)*Dp + (b/d)*p = Sum(dj*rj) has a solution p of degree <= n
    # in k[t] if and only if p = Sum(ek*gk) where e1, ..., ev are in
    # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
    # The solutions of the original equation are then
    # Sum(dj*fj, (j, 1, u)) + alpha*Sum(ek*gk, (k, 1, v)).

    # Collect solution components.
    h = f + [alpha*gk for gk in g]

    # Build combined relation matrix.
    A = -eye(m, DE.t)
    for vj in V:
        A = A.row_join(vj)
    A = A.row_join(zeros(m, len(g), DE.t))
    A = A.col_join(zeros(B.rows, m, DE.t).row_join(B))

    return h, A


def param_rischDE(fa, fd, G, DE):
    """
    Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)).

    Explanation
    ===========

    Given a derivation D in k(t), f in k(t), and G
    = [G1, ..., Gm] in k(t)^m, return h = [h1, ..., hr] in k(t)^r and
    a matrix A with m + r columns and entries in Const(k) such that
    Dy + f*y = Sum(ci*Gi, (i, 1, m)) has a solution y
    in k(t) with c1, ..., cm in Const(k) if and only if y = Sum(dj*hj,
    (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
    d1, ..., dr) is a solution of Ax == 0.

    Elements of k(t) are tuples (a, d) with a and d in k[t].
    """
    m = len(G)
    q, (fa, fd) = weak_normalizer(fa, fd, DE)
    # Solutions of the weakly normalized equation Dz + f*z = q*Sum(ci*Gi)
    # correspond to solutions y = z/q of the original equation.
    gamma = q
    G = [(q*ga).cancel(gd, include=True) for ga, gd in G]

    a, (ba, bd), G, hn = prde_normal_denom(fa, fd, G, DE)
    # Solutions q in k<t> of  a*Dq + b*q = Sum(ci*Gi) correspond
    # to solutions z = q/hn of the weakly normalized equation.
    gamma *= hn

    A, B, G, hs = prde_special_denom(a, ba, bd, G, DE)
    # Solutions p in k[t] of  A*Dp + B*p = Sum(ci*Gi) correspond
    # to solutions q = p/hs of the previous equation.
    gamma *= hs

    g = A.gcd(B)
    a, b, g = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for
        gia, gid in G]

    # a*Dp + b*p = Sum(ci*gi)  may have a polynomial solution
    # only if the sum is in k[t].

    q, M = prde_linear_constraints(a, b, g, DE)

    # q = [q1, ..., qm] where qi in k[t] is the polynomial component
    # of the partial fraction expansion of gi.
    # M is a matrix with m columns and entries in k.
    # Sum(fi*gi, (i, 1, m)), where f1, ..., fm are elements of k,
    # is a polynomial if and only if M*Matrix([f1, ..., fm]) == 0,
    # in which case the sum is equal to Sum(fi*qi).

    M, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)
    # M is a matrix with m columns and entries in Const(k).
    # Sum(ci*gi) is in k[t] for c1, ..., cm in Const(k)
    # if and only if M*Matrix([c1, ..., cm]) == 0,
    # in which case the sum is Sum(ci*qi).

    ## Reduce number of constants at this point

    V = M.nullspace()
    # V = [v1, ..., vu] where each vj is a column matrix with
    # entries aj1, ..., ajm in Const(k).
    # Sum(aji*gi) is in k[t] and equal to Sum(aji*qi) (j = 1, ..., u).
    # Sum(ci*gi) is in k[t] if and only is ci = Sum(dj*aji)
    # (i = 1, ..., m) for some d1, ..., du in Const(k).
    # In that case,
    #     Sum(ci*gi) = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) = Sum(dj*rj)
    # where rj = Sum(aji*qi) (j = 1, ..., u) in k[t].

    if not V:  # No non-trivial solution
        return [], eye(m, DE.t)

    Mq = Matrix([q])  # A single row.
    r = [(Mq*vj)[0] for vj in V]  # [r1, ..., ru]

    # Solutions of a*Dp + b*p = Sum(dj*rj) correspond to solutions
    # y = p/gamma of the initial equation with ci = Sum(dj*aji).

    try:
        # We try n=5. At least for prde_spde, it will always
        # terminate no matter what n is.
        n = bound_degree(a, b, r, DE, parametric=True)
    except NotImplementedError:
        # A temporary bound is set. Eventually, it will be removed.
        # the currently added test case takes large time
        # even with n=5, and much longer with large n's.
        n = 5

    h, B = param_poly_rischDE(a, b, r, n, DE)

    # h = [h1, ..., hv] in k[t]^v and and B is a matrix with u + v
    # columns and entries in Const(k) such that
    # a*Dp + b*p = Sum(dj*rj) has a solution p of degree <= n
    # in k[t] if and only if p = Sum(ek*hk) where e1, ..., ev are in
    # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
    # The solutions of the original equation for ci = Sum(dj*aji)
    # (i = 1, ..., m) are then y = Sum(ek*hk, (k, 1, v))/gamma.

    ## Build combined relation matrix with m + u + v columns.

    A = -eye(m, DE.t)
    for vj in V:
        A = A.row_join(vj)
    A = A.row_join(zeros(m, len(h), DE.t))
    A = A.col_join(zeros(B.rows, m, DE.t).row_join(B))

    ## Eliminate d1, ..., du.

    W = A.nullspace()

    # W = [w1, ..., wt] where each wl is a column matrix with
    # entries blk (k = 1, ..., m + u + v) in Const(k).
    # The vectors (bl1, ..., blm) generate the space of those
    # constant families (c1, ..., cm) for which a solution of
    # the equation Dy + f*y == Sum(ci*Gi) exists. They generate
    # the space and form a basis except possibly when Dy + f*y == 0
    # is solvable in k(t}. The corresponding solutions are
    # y = Sum(blk'*hk, (k, 1, v))/gamma, where k' = k + m + u.

    v = len(h)
    shape = (len(W), m+v)
    elements = [wl[:m] + wl[-v:] for wl in W] # excise dj's.
    items = [e for row in elements for e in row]

    # Need to set the shape in case W is empty
    M = Matrix(*shape, items, DE.t)
    N = M.nullspace()

    # N = [n1, ..., ns] where the ni in Const(k)^(m + v) are column
    # vectors generating the space of linear relations between
    # c1, ..., cm, e1, ..., ev.

    C = Matrix([ni[:] for ni in N], DE.t)  # rows n1, ..., ns.

    return [hk.cancel(gamma, include=True) for hk in h], C


def limited_integrate_reduce(fa, fd, G, DE):
    """
    Simpler version of step 1 & 2 for the limited integration problem.

    Explanation
    ===========

    Given a derivation D on k(t) and f, g1, ..., gn in k(t), return
    (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer,
    g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t),
    c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and
    p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)).  Furthermore,
    if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian
    over k, then deg(p) <= N.

    So that the special part is always computed, this function calls the more
    general prde_special_denom() automatically if it cannot determine that
    S1irr == Sirr.  Furthermore, it will automatically call bound_degree() when
    t is linear and non-Liouvillian, which for the transcendental case, implies
    that Dt == a*t + b with for some a, b in k*.
    """
    dn, ds = splitfactor(fd, DE)
    E = [splitfactor(gd, DE) for _, gd in G]
    En, Es = list(zip(*E))
    c = reduce(lambda i, j: i.lcm(j), (dn,) + En)  # lcm(dn, en1, ..., enm)
    hn = c.gcd(c.diff(DE.t))
    a = hn
    b = -derivation(hn, DE)
    N = 0

    # These are the cases where we know that S1irr = Sirr, but there could be
    # others, and this algorithm will need to be extended to handle them.
    if DE.case in ('base', 'primitive', 'exp', 'tan'):
        hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es)  # lcm(ds, es1, ..., esm)
        a = hn*hs
        b -= (hn*derivation(hs, DE)).quo(hs)
        mu = min(order_at_oo(fa, fd, DE.t), min(order_at_oo(ga, gd, DE.t) for
            ga, gd in G))
        # So far, all the above are also nonlinear or Liouvillian, but if this
        # changes, then this will need to be updated to call bound_degree()
        # as per the docstring of this function (DE.case == 'other_linear').
        N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu)
    else:
        # TODO: implement this
        raise NotImplementedError

    V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G]
    return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V)


def limited_integrate(fa, fd, G, DE):
    """
    Solves the limited integration problem:  f = Dv + Sum(ci*wi, (i, 1, n))
    """
    fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic()
    # interpreting limited integration problem as a
    # parametric Risch DE problem
    Fa = Poly(0, DE.t)
    Fd = Poly(1, DE.t)
    G = [(fa, fd)] + G
    h, A = param_rischDE(Fa, Fd, G, DE)
    V = A.nullspace()
    V = [v for v in V if v[0] != 0]
    if not V:
        return None
    else:
        # we can take any vector from V, we take V[0]
        c0 = V[0][0]
        # v = [-1, c1, ..., cm, d1, ..., dr]
        v = V[0]/(-c0)
        r = len(h)
        m = len(v) - r - 1
        C = list(v[1: m + 1])
        y = -sum(v[m + 1 + i]*h[i][0].as_expr()/h[i][1].as_expr() \
                for i in range(r))
        y_num, y_den = y.as_numer_denom()
        Ya, Yd = Poly(y_num, DE.t), Poly(y_den, DE.t)
        Y = Ya*Poly(1/Yd.LC(), DE.t), Yd.monic()
        return Y, C


def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
    """
    Parametric logarithmic derivative heuristic.

    Explanation
    ===========

    Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
    theta over k(t), raises either NotImplementedError, in which case the
    heuristic failed, or returns None, in which case it has proven that no
    solution exists, or returns a solution (n, m, v) of the equation
    n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.

    If this heuristic fails, the structure theorem approach will need to be
    used.

    The argument w == Dtheta/theta
    """
    # TODO: finish writing this and write tests
    c1 = c1 or Dummy('c1')

    p, a = fa.div(fd)
    q, b = wa.div(wd)

    B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
    C = max(p.degree(DE.t), q.degree(DE.t))

    if q.degree(DE.t) > B:
        eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)]
        s = solve(eqs, c1)
        if not s or not s[c1].is_Rational:
            # deg(q) > B, no solution for c.
            return None

        M, N = s[c1].as_numer_denom()
        M_poly = M.as_poly(q.gens)
        N_poly = N.as_poly(q.gens)

        nfmwa = N_poly*fa*wd - M_poly*wa*fd
        nfmwd = fd*wd
        Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE, 'auto')
        if Qv is None:
            # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
            return None

        Q, v = Qv

        if Q.is_zero or v.is_zero:
            return None

        return (Q*N, Q*M, v)

    if p.degree(DE.t) > B:
        return None

    c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
    l = fd.monic().lcm(wd.monic())*Poly(c, DE.t)
    ln, ls = splitfactor(l, DE)
    z = ls*ln.gcd(ln.diff(DE.t))

    if not z.has(DE.t):
        # TODO: We treat this as 'no solution', until the structure
        # theorem version of parametric_log_deriv is implemented.
        return None

    u1, r1 = (fa*l.quo(fd)).div(z)  # (l*f).div(z)
    u2, r2 = (wa*l.quo(wd)).div(z)  # (l*w).div(z)

    eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))]
    s = solve(eqs, c1)
    if not s or not s[c1].is_Rational:
        # deg(q) <= B, no solution for c.
        return None

    M, N = s[c1].as_numer_denom()

    nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd
    nfmwd = fd*wd
    Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
    if Qv is None:
        # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
        return None

    Q, v = Qv

    if Q.is_zero or v.is_zero:
        return None

    return (Q*N, Q*M, v)


def parametric_log_deriv(fa, fd, wa, wd, DE):
    # TODO: Write the full algorithm using the structure theorems.
#    try:
    A = parametric_log_deriv_heu(fa, fd, wa, wd, DE)
#    except NotImplementedError:
        # Heuristic failed, we have to use the full method.
        # TODO: This could be implemented more efficiently.
        # It isn't too worrisome, because the heuristic handles most difficult
        # cases.
    return A


def is_deriv_k(fa, fd, DE):
    r"""
    Checks if Df/f is the derivative of an element of k(t).

    Explanation
    ===========

    a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
    such that a = Db.  Either returns (ans, u), such that Df/f == Du, or None,
    which means that Df/f is not the derivative of an element of k(t).  ans is
    a list of tuples such that Add(*[i*j for i, j in ans]) == u.  This is useful
    for seeing exactly which elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df/f is the derivative of a element of K if and only if there are ri
    in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i      Df
            /     i     i     /     i   ---   =  --.
            ---               ---        t        f
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  E_args are the arguments of the
    hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
    exp(E_args[i])).  This is needed to compute the final answer u such that
    Df/f == Du.

    log(f) will be the same as u up to a additive constant.  This is because
    they will both behave the same as monomials. For example, both log(x) and
    log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
    Therefore, the term const is returned.  const is such that
    log(const) + f == u.  This is calculated by dividing the arguments of one
    logarithm from the other.  Therefore, it is necessary to pass the arguments
    of the logarithmic terms in L_args.

    To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().

    See also
    ========
    is_log_deriv_k_t_radical_in_field, is_log_deriv_k_t_radical

    """
    # Compute Df/f
    dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd*fa
    dfa, dfd = dfa.cancel(dfd, include=True)

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.exts) != len(DE.D):
        if [i for i in DE.cases if i == 'tan'] or \
                ({i for i in DE.cases if i == 'primitive'} -
                        set(DE.indices('log'))):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
    L_part = [DE.D[i].as_expr() for i in DE.indices('log')]

    # The expression dfa/dfd might not be polynomial in any of its symbols so we
    # use a Dummy as the generator for PolyMatrix.
    dum = Dummy()
    lhs = Matrix([E_part + L_part], dum)
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum)

    A, u = constant_system(lhs, rhs, DE)

    u = u.to_Matrix()  # Poly to Expr

    if not A or not all(derivation(i, DE, basic=True).is_zero for i in u):
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            terms = ([DE.extargs[i] for i in DE.indices('exp')] +
                    [DE.T[i] for i in DE.indices('log')])
            ans = list(zip(terms, u))
            result = Add(*[Mul(i, j) for i, j in ans])
            argterms = ([DE.T[i] for i in DE.indices('exp')] +
                    [DE.extargs[i] for i in DE.indices('log')])
            l = []
            ld = []
            for i, j in zip(argterms, u):
                # We need to get around things like sqrt(x**2) != x
                # and also sqrt(x**2 + 2*x + 1) != x + 1
                # Issue 10798: i need not be a polynomial
                i, d = i.as_numer_denom()
                icoeff, iterms = sqf_list(i)
                l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms])))
                dcoeff, dterms = sqf_list(d)
                ld.append(Mul(*([Pow(dcoeff, j)] + [Pow(b, e*j) for b, e in dterms])))
            const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)*Mul(*ld))

            return (ans, result, const)


def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
    r"""
    Checks if Df is the logarithmic derivative of a k(t)-radical.

    Explanation
    ===========

    b in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
    Either returns (ans, u, n, const) or None, which means that Df cannot be
    written as the logarithmic derivative of a k(t)-radical.  ans is a list of
    tuples such that Mul(*[i**j for i, j in ans]) == u.  This is useful for
    seeing exactly what elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df is the logarithmic derivative of a K-radical if and only if there
    are ri in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i
            /     i     i     /     i   ---   =  Df.
            ---               ---        t
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  L_args are the arguments of the logarithms
    indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])).  This is
    needed to compute the final answer u such that n*f == Du/u.

    exp(f) will be the same as u up to a multiplicative constant.  This is
    because they will both behave the same as monomials.  For example, both
    exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
    is returned.  const is such that exp(const)*f == u.  This is calculated by
    subtracting the arguments of one exponential from the other.  Therefore, it
    is necessary to pass the arguments of the exponential terms in E_args.

    To handle the case where we are given Df, not f, use
    is_log_deriv_k_t_radical_in_field().

    See also
    ========

    is_log_deriv_k_t_radical_in_field, is_deriv_k

    """
    if Df:
        dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2,
            include=True)
    else:
        dfa, dfd = fa, fd

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.exts) != len(DE.D):
        if [i for i in DE.cases if i == 'tan'] or \
                ({i for i in DE.cases if i == 'primitive'} -
                        set(DE.indices('log'))):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
    L_part = [DE.D[i].as_expr() for i in DE.indices('log')]

    # The expression dfa/dfd might not be polynomial in any of its symbols so we
    # use a Dummy as the generator for PolyMatrix.
    dum = Dummy()
    lhs = Matrix([E_part + L_part], dum)
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum)

    A, u = constant_system(lhs, rhs, DE)

    u = u.to_Matrix()  # Poly to Expr

    if not A or not all(derivation(i, DE, basic=True).is_zero for i in u):
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            # TODO: But maybe we can tell if they're not rational, like
            # log(2)/log(3). Also, there should be an option to continue
            # anyway, even if the result might potentially be wrong.
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            n = S.One*reduce(ilcm, [i.as_numer_denom()[1] for i in u])
            u *= n
            terms = ([DE.T[i] for i in DE.indices('exp')] +
                    [DE.extargs[i] for i in DE.indices('log')])
            ans = list(zip(terms, u))
            result = Mul(*[Pow(i, j) for i, j in ans])

            # exp(f) will be the same as result up to a multiplicative
            # constant.  We now find the log of that constant.
            argterms = ([DE.extargs[i] for i in DE.indices('exp')] +
                    [DE.T[i] for i in DE.indices('log')])
            const = cancel(fa.as_expr()/fd.as_expr() -
                Add(*[Mul(i, j/n) for i, j in zip(argterms, u)]))

            return (ans, result, n, const)


def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None):
    """
    Checks if f can be written as the logarithmic derivative of a k(t)-radical.

    Explanation
    ===========

    It differs from is_log_deriv_k_t_radical(fa, fd, DE, Df=False)
    for any given fa, fd, DE in that it finds the solution in the
    given field not in some (possibly unspecified extension) and
    "in_field" with the function name is used to indicate that.

    f in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u.
    Either returns (n, u) or None, which means that f cannot be written as the
    logarithmic derivative of a k(t)-radical.

    case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive,
    hyperexponential, and hypertangent cases, respectively.  If case is 'auto',
    it will attempt to determine the type of the derivation automatically.

    See also
    ========
    is_log_deriv_k_t_radical, is_deriv_k

    """
    fa, fd = fa.cancel(fd, include=True)

    # f must be simple
    n, s = splitfactor(fd, DE)
    if not s.is_one:
        pass

    z = z or Dummy('z')
    H, b = residue_reduce(fa, fd, DE, z=z)
    if not b:
        # I will have to verify, but I believe that the answer should be
        # None in this case. This should never happen for the
        # functions given when solving the parametric logarithmic
        # derivative problem when integration elementary functions (see
        # Bronstein's book, page 255), so most likely this indicates a bug.
        return None

    roots = [(i, i.real_roots()) for i, _ in H]
    if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for
               i, j in roots):
        # If f is the logarithmic derivative of a k(t)-radical, then all the
        # roots of the resultant must be rational numbers.
        return None

    # [(a, i), ...], where i*log(a) is a term in the log-part of the integral
    # of f
    respolys, residues = list(zip(*roots)) or [[], []]
    # Note: this might be empty, but everything below should work find in that
    # case (it should be the same as if it were [[1, 1]])
    residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for
        i in residues[j]]

    # TODO: finish writing this and write tests

    p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z))

    p = p.as_poly(DE.t)
    if p is None:
        # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
        return None

    if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
        return None

    if case == 'auto':
        case = DE.case

    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t, cancel=True)
            wa, wd = frac_in((wa, wd), DE.t)
            A = parametric_log_deriv(pa, pd, wa, wd, DE)
        if A is None:
            return None
        n, e, u = A
        u *= DE.t**e

    elif case == 'primitive':
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t)
            A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')
        if A is None:
            return None
        n, u = A

    elif case == 'base':
        # TODO: we can use more efficient residue reduction from ratint()
        if not fd.is_sqf or fa.degree() >= fd.degree():
            # f is the logarithmic derivative in the base case if and only if
            # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and
            # gcd(fa, fd) == 1.  The last condition is handled by cancel() above.
            return None
        # Note: if residueterms = [], returns (1, 1)
        # f had better be 0 in that case.
        n = S.One*reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], 1)
        u = Mul(*[Pow(i, j*n) for i, j in residueterms])
        return (n, u)

    elif case == 'tan':
        raise NotImplementedError("The hypertangent case is "
        "not yet implemented for is_log_deriv_k_t_radical_in_field()")

    elif case in ('other_linear', 'other_nonlinear'):
        # XXX: If these are supported by the structure theorems, change to NotImplementedError.
        raise ValueError("The %s case is not supported in this function." % case)

    else:
        raise ValueError("case must be one of {'primitive', 'exp', 'tan', "
        "'base', 'auto'}, not %s" % case)

    common_denom = S.One*reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in
        residueterms]] + [n], 1)
    residueterms = [(i, j*common_denom) for i, j in residueterms]
    m = common_denom//n
    if common_denom != n*m:  # Verify exact division
        raise ValueError("Inexact division")
    u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms]))

    return (common_denom, u)