Spaces:
Sleeping
Sleeping
File size: 27,390 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
"""
Algorithms for solving the Risch differential equation.
Given a differential field K of characteristic 0 that is a simple
monomial extension of a base field k and f, g in K, the Risch
Differential Equation problem is to decide if there exist y in K such
that Dy + f*y == g and to find one if there are some. If t is a
monomial over k and the coefficients of f and g are in k(t), then y is
in k(t), and the outline of the algorithm here is given as:
1. Compute the normal part n of the denominator of y. The problem is
then reduced to finding y' in k<t>, where y == y'/n.
2. Compute the special part s of the denominator of y. The problem is
then reduced to finding y'' in k[t], where y == y''/(n*s)
3. Bound the degree of y''.
4. Reduce the equation Dy + f*y == g to a similar equation with f, g in
k[t].
5. Find the solutions in k[t] of bounded degree of the reduced equation.
See Chapter 6 of "Symbolic Integration I: Transcendental Functions" by
Manuel Bronstein. See also the docstring of risch.py.
"""
from operator import mul
from functools import reduce
from sympy.core import oo
from sympy.core.symbol import Dummy
from sympy.polys import Poly, gcd, ZZ, cancel
from sympy.functions.elementary.complexes import (im, re)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
splitfactor, NonElementaryIntegralException, DecrementLevel, recognize_log_derivative)
# TODO: Add messages to NonElementaryIntegralException errors
def order_at(a, p, t):
"""
Computes the order of a at p, with respect to t.
Explanation
===========
For a, p in k[t], the order of a at p is defined as nu_p(a) = max({n
in Z+ such that p**n|a}), where a != 0. If a == 0, nu_p(a) = +oo.
To compute the order at a rational function, a/b, use the fact that
nu_p(a/b) == nu_p(a) - nu_p(b).
"""
if a.is_zero:
return oo
if p == Poly(t, t):
return a.as_poly(t).ET()[0][0]
# Uses binary search for calculating the power. power_list collects the tuples
# (p^k,k) where each k is some power of 2. After deciding the largest k
# such that k is power of 2 and p^k|a the loop iteratively calculates
# the actual power.
power_list = []
p1 = p
r = a.rem(p1)
tracks_power = 1
while r.is_zero:
power_list.append((p1,tracks_power))
p1 = p1*p1
tracks_power *= 2
r = a.rem(p1)
n = 0
product = Poly(1, t)
while len(power_list) != 0:
final = power_list.pop()
productf = product*final[0]
r = a.rem(productf)
if r.is_zero:
n += final[1]
product = productf
return n
def order_at_oo(a, d, t):
"""
Computes the order of a/d at oo (infinity), with respect to t.
For f in k(t), the order or f at oo is defined as deg(d) - deg(a), where
f == a/d.
"""
if a.is_zero:
return oo
return d.degree(t) - a.degree(t)
def weak_normalizer(a, d, DE, z=None):
"""
Weak normalization.
Explanation
===========
Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
such that f - Dq/q is weakly normalized with respect to t.
f in k(t) is said to be "weakly normalized" with respect to t if
residue_p(f) is not a positive integer for any normal irreducible p
in k[t] such that f is in R_p (Definition 6.1.1). If f has an
elementary integral, this is equivalent to no logarithm of
integral(f) whose argument depends on t has a positive integer
coefficient, where the arguments of the logarithms not in k(t) are
in k[t].
Returns (q, f - Dq/q)
"""
z = z or Dummy('z')
dn, ds = splitfactor(d, DE)
# Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
# factorization of d.
g = gcd(dn, dn.diff(DE.t))
d_sqf_part = dn.quo(g)
d1 = d_sqf_part.quo(gcd(d_sqf_part, g))
a1, b = gcdex_diophantine(d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t),
a.as_poly(DE.t))
r = (a - Poly(z, DE.t)*derivation(d1, DE)).as_poly(DE.t).resultant(
d1.as_poly(DE.t))
r = Poly(r, z)
if not r.expr.has(z):
return (Poly(1, DE.t), (a, d))
N = [i for i in r.real_roots() if i in ZZ and i > 0]
q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N],
Poly(1, DE.t))
dq = derivation(q, DE)
sn = q*a - d*dq
sd = q*d
sn, sd = sn.cancel(sd, include=True)
return (q, (sn, sd))
def normal_denom(fa, fd, ga, gd, DE):
"""
Normal part of the denominator.
Explanation
===========
Given a derivation D on k[t] and f, g in k(t) with f weakly
normalized with respect to t, either raise NonElementaryIntegralException,
in which case the equation Dy + f*y == g has no solution in k(t), or the
quadruplet (a, b, c, h) such that a, h in k[t], b, c in k<t>, and for any
solution y in k(t) of Dy + f*y == g, q = y*h in k<t> satisfies
a*Dq + b*q == c.
This constitutes step 1 in the outline given in the rde.py docstring.
"""
dn, ds = splitfactor(fd, DE)
en, es = splitfactor(gd, DE)
p = dn.gcd(en)
h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))
a = dn*h
c = a*h
if c.div(en)[1]:
# en does not divide dn*h**2
raise NonElementaryIntegralException
ca = c*ga
ca, cd = ca.cancel(gd, include=True)
ba = a*fa - dn*derivation(h, DE)*fd
ba, bd = ba.cancel(fd, include=True)
# (dn*h, dn*h*f - dn*Dh, dn*h**2*g, h)
return (a, (ba, bd), (ca, cd), h)
def special_denom(a, ba, bd, ca, cd, DE, case='auto'):
"""
Special part of the denominator.
Explanation
===========
case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
hypertangent, and primitive cases, respectively. For the
hyperexponential (resp. hypertangent) case, given a derivation D on
k[t] and a in k[t], b, c, in k<t> with Dt/t in k (resp. Dt/(t**2 + 1) in
k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
gcd(a, t**2 + 1) == 1), return the quadruplet (A, B, C, 1/h) such that
A, B, C, h in k[t] and for any solution q in k<t> of a*Dq + b*q == c,
r = qh in k[t] satisfies A*Dr + B*r == C.
For ``case == 'primitive'``, k<t> == k[t], so it returns (a, b, c, 1) in
this case.
This constitutes step 2 of the outline given in the rde.py docstring.
"""
# TODO: finish writing this and write tests
if case == 'auto':
case = DE.case
if case == 'exp':
p = Poly(DE.t, DE.t)
elif case == 'tan':
p = Poly(DE.t**2 + 1, DE.t)
elif case in ('primitive', 'base'):
B = ba.to_field().quo(bd)
C = ca.to_field().quo(cd)
return (a, B, C, Poly(1, DE.t))
else:
raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
"'base'}, not %s." % case)
nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
nc = order_at(ca, p, DE.t) - order_at(cd, p, DE.t)
n = min(0, nc - min(0, nb))
if not nb:
# Possible cancellation.
from .prde import parametric_log_deriv
if case == 'exp':
dcoeff = DE.d.quo(Poly(DE.t, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
etaa, etad = frac_in(dcoeff, DE.t)
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
if A is not None:
Q, m, z = A
if Q == 1:
n = min(n, m)
elif case == 'tan':
dcoeff = DE.d.quo(Poly(DE.t**2+1, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
alphaa, alphad = frac_in(im(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t)
betaa, betad = frac_in(re(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t)
etaa, etad = frac_in(dcoeff, DE.t)
if recognize_log_derivative(Poly(2, DE.t)*betaa, betad, DE):
A = parametric_log_deriv(alphaa*Poly(sqrt(-1), DE.t)*betad+alphad*betaa, alphad*betad, etaa, etad, DE)
if A is not None:
Q, m, z = A
if Q == 1:
n = min(n, m)
N = max(0, -nb, n - nc)
pN = p**N
pn = p**-n
A = a*pN
B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
C = (ca*pN*pn).quo(cd)
h = pn
# (a*p**N, (b + n*a*Dp/p)*p**N, c*p**(N - n), p**-n)
return (A, B, C, h)
def bound_degree(a, b, cQ, DE, case='auto', parametric=False):
"""
Bound on polynomial solutions.
Explanation
===========
Given a derivation D on k[t] and ``a``, ``b``, ``c`` in k[t] with ``a != 0``, return
n in ZZ such that deg(q) <= n for any solution q in k[t] of
a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution
c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m))
when parametric=True.
For ``parametric=False``, ``cQ`` is ``c``, a ``Poly``; for ``parametric=True``, ``cQ`` is Q ==
[q1, ..., qm], a list of Polys.
This constitutes step 3 of the outline given in the rde.py docstring.
"""
# TODO: finish writing this and write tests
if case == 'auto':
case = DE.case
da = a.degree(DE.t)
db = b.degree(DE.t)
# The parametric and regular cases are identical, except for this part
if parametric:
dc = max(i.degree(DE.t) for i in cQ)
else:
dc = cQ.degree(DE.t)
alpha = cancel(-b.as_poly(DE.t).LC().as_expr()/
a.as_poly(DE.t).LC().as_expr())
if case == 'base':
n = max(0, dc - max(db, da - 1))
if db == da - 1 and alpha.is_Integer:
n = max(0, alpha, dc - db)
elif case == 'primitive':
if db > da:
n = max(0, dc - db)
else:
n = max(0, dc - da + 1)
etaa, etad = frac_in(DE.d, DE.T[DE.level - 1])
t1 = DE.t
with DecrementLevel(DE):
alphaa, alphad = frac_in(alpha, DE.t)
if db == da - 1:
from .prde import limited_integrate
# if alpha == m*Dt + Dz for z in k and m in ZZ:
try:
(za, zd), m = limited_integrate(alphaa, alphad, [(etaa, etad)],
DE)
except NonElementaryIntegralException:
pass
else:
if len(m) != 1:
raise ValueError("Length of m should be 1")
n = max(n, m[0])
elif db == da:
# if alpha == Dz/z for z in k*:
# beta = -lc(a*Dz + b*z)/(z*lc(a))
# if beta == m*Dt + Dw for w in k and m in ZZ:
# n = max(n, m)
from .prde import is_log_deriv_k_t_radical_in_field
A = is_log_deriv_k_t_radical_in_field(alphaa, alphad, DE)
if A is not None:
aa, z = A
if aa == 1:
beta = -(a*derivation(z, DE).as_poly(t1) +
b*z.as_poly(t1)).LC()/(z.as_expr()*a.LC())
betaa, betad = frac_in(beta, DE.t)
from .prde import limited_integrate
try:
(za, zd), m = limited_integrate(betaa, betad,
[(etaa, etad)], DE)
except NonElementaryIntegralException:
pass
else:
if len(m) != 1:
raise ValueError("Length of m should be 1")
n = max(n, m[0].as_expr())
elif case == 'exp':
from .prde import parametric_log_deriv
n = max(0, dc - max(db, da))
if da == db:
etaa, etad = frac_in(DE.d.quo(Poly(DE.t, DE.t)), DE.T[DE.level - 1])
with DecrementLevel(DE):
alphaa, alphad = frac_in(alpha, DE.t)
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
if A is not None:
# if alpha == m*Dt/t + Dz/z for z in k* and m in ZZ:
# n = max(n, m)
a, m, z = A
if a == 1:
n = max(n, m)
elif case in ('tan', 'other_nonlinear'):
delta = DE.d.degree(DE.t)
lam = DE.d.LC()
alpha = cancel(alpha/lam)
n = max(0, dc - max(da + delta - 1, db))
if db == da + delta - 1 and alpha.is_Integer:
n = max(0, alpha, dc - db)
else:
raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
"'other_nonlinear', 'base'}, not %s." % case)
return n
def spde(a, b, c, n, DE):
"""
Rothstein's Special Polynomial Differential Equation algorithm.
Explanation
===========
Given a derivation D on k[t], an integer n and ``a``,``b``,``c`` in k[t] with
``a != 0``, either raise NonElementaryIntegralException, in which case the
equation a*Dq + b*q == c has no solution of degree at most ``n`` in
k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
at most n of a*Dq + b*q == c must be of the form
q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.
This constitutes step 4 of the outline given in the rde.py docstring.
"""
zero = Poly(0, DE.t)
alpha = Poly(1, DE.t)
beta = Poly(0, DE.t)
while True:
if c.is_zero:
return (zero, zero, 0, zero, beta) # -1 is more to the point
if (n < 0) is True:
raise NonElementaryIntegralException
g = a.gcd(b)
if not c.rem(g).is_zero: # g does not divide c
raise NonElementaryIntegralException
a, b, c = a.quo(g), b.quo(g), c.quo(g)
if a.degree(DE.t) == 0:
b = b.to_field().quo(a)
c = c.to_field().quo(a)
return (b, c, n, alpha, beta)
r, z = gcdex_diophantine(b, a, c)
b += derivation(a, DE)
c = z - derivation(r, DE)
n -= a.degree(DE.t)
beta += alpha * r
alpha *= a
def no_cancel_b_large(b, c, n, DE):
"""
Poly Risch Differential Equation - No cancellation: deg(b) large enough.
Explanation
===========
Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
in k[t] with ``b != 0`` and either D == d/dt or
deg(b) > max(0, deg(D) - 1), either raise NonElementaryIntegralException, in
which case the equation ``Dq + b*q == c`` has no solution of degree at
most n in k[t], or a solution q in k[t] of this equation with
``deg(q) < n``.
"""
q = Poly(0, DE.t)
while not c.is_zero:
m = c.degree(DE.t) - b.degree(DE.t)
if not 0 <= m <= n: # n < 0 or m < 0 or m > n
raise NonElementaryIntegralException
p = Poly(c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC()*DE.t**m, DE.t,
expand=False)
q = q + p
n = m - 1
c = c - derivation(p, DE) - b*p
return q
def no_cancel_b_small(b, c, n, DE):
"""
Poly Risch Differential Equation - No cancellation: deg(b) small enough.
Explanation
===========
Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or
deg(D) >= 2, either raise NonElementaryIntegralException, in which case the
equation Dq + b*q == c has no solution of degree at most n in k[t],
or a solution q in k[t] of this equation with deg(q) <= n, or the
tuple (h, b0, c0) such that h in k[t], b0, c0, in k, and for any
solution q in k[t] of degree at most n of Dq + bq == c, y == q - h
is a solution in k of Dy + b0*y == c0.
"""
q = Poly(0, DE.t)
while not c.is_zero:
if n == 0:
m = 0
else:
m = c.degree(DE.t) - DE.d.degree(DE.t) + 1
if not 0 <= m <= n: # n < 0 or m < 0 or m > n
raise NonElementaryIntegralException
if m > 0:
p = Poly(c.as_poly(DE.t).LC()/(m*DE.d.as_poly(DE.t).LC())*DE.t**m,
DE.t, expand=False)
else:
if b.degree(DE.t) != c.degree(DE.t):
raise NonElementaryIntegralException
if b.degree(DE.t) == 0:
return (q, b.as_poly(DE.T[DE.level - 1]),
c.as_poly(DE.T[DE.level - 1]))
p = Poly(c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC(), DE.t,
expand=False)
q = q + p
n = m - 1
c = c - derivation(p, DE) - b*p
return q
# TODO: better name for this function
def no_cancel_equal(b, c, n, DE):
"""
Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1
Explanation
===========
Given a derivation D on k[t] with deg(D) >= 2, n either an integer
or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
NonElementaryIntegralException, in which case the equation Dq + b*q == c has
no solution of degree at most n in k[t], or a solution q in k[t] of
this equation with deg(q) <= n, or the tuple (h, m, C) such that h
in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
of degree at most m of Dy + b*y == C.
"""
q = Poly(0, DE.t)
lc = cancel(-b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC())
if lc.is_Integer and lc.is_positive:
M = lc
else:
M = -1
while not c.is_zero:
m = max(M, c.degree(DE.t) - DE.d.degree(DE.t) + 1)
if not 0 <= m <= n: # n < 0 or m < 0 or m > n
raise NonElementaryIntegralException
u = cancel(m*DE.d.as_poly(DE.t).LC() + b.as_poly(DE.t).LC())
if u.is_zero:
return (q, m, c)
if m > 0:
p = Poly(c.as_poly(DE.t).LC()/u*DE.t**m, DE.t, expand=False)
else:
if c.degree(DE.t) != DE.d.degree(DE.t) - 1:
raise NonElementaryIntegralException
else:
p = c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC()
q = q + p
n = m - 1
c = c - derivation(p, DE) - b*p
return q
def cancel_primitive(b, c, n, DE):
"""
Poly Risch Differential Equation - Cancellation: Primitive case.
Explanation
===========
Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
``c`` in k[t] with Dt in k and ``b != 0``, either raise
NonElementaryIntegralException, in which case the equation Dq + b*q == c
has no solution of degree at most n in k[t], or a solution q in k[t] of
this equation with deg(q) <= n.
"""
# Delayed imports
from .prde import is_log_deriv_k_t_radical_in_field
with DecrementLevel(DE):
ba, bd = frac_in(b, DE.t)
A = is_log_deriv_k_t_radical_in_field(ba, bd, DE)
if A is not None:
n, z = A
if n == 1: # b == Dz/z
raise NotImplementedError("is_deriv_in_field() is required to "
" solve this problem.")
# if z*c == Dp for p in k[t] and deg(p) <= n:
# return p/z
# else:
# raise NonElementaryIntegralException
if c.is_zero:
return c # return 0
if n < c.degree(DE.t):
raise NonElementaryIntegralException
q = Poly(0, DE.t)
while not c.is_zero:
m = c.degree(DE.t)
if n < m:
raise NonElementaryIntegralException
with DecrementLevel(DE):
a2a, a2d = frac_in(c.LC(), DE.t)
sa, sd = rischDE(ba, bd, a2a, a2d, DE)
stm = Poly(sa.as_expr()/sd.as_expr()*DE.t**m, DE.t, expand=False)
q += stm
n = m - 1
c -= b*stm + derivation(stm, DE)
return q
def cancel_exp(b, c, n, DE):
"""
Poly Risch Differential Equation - Cancellation: Hyperexponential case.
Explanation
===========
Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
``c`` in k[t] with Dt/t in k and ``b != 0``, either raise
NonElementaryIntegralException, in which case the equation Dq + b*q == c
has no solution of degree at most n in k[t], or a solution q in k[t] of
this equation with deg(q) <= n.
"""
from .prde import parametric_log_deriv
eta = DE.d.quo(Poly(DE.t, DE.t)).as_expr()
with DecrementLevel(DE):
etaa, etad = frac_in(eta, DE.t)
ba, bd = frac_in(b, DE.t)
A = parametric_log_deriv(ba, bd, etaa, etad, DE)
if A is not None:
a, m, z = A
if a == 1:
raise NotImplementedError("is_deriv_in_field() is required to "
"solve this problem.")
# if c*z*t**m == Dp for p in k<t> and q = p/(z*t**m) in k[t] and
# deg(q) <= n:
# return q
# else:
# raise NonElementaryIntegralException
if c.is_zero:
return c # return 0
if n < c.degree(DE.t):
raise NonElementaryIntegralException
q = Poly(0, DE.t)
while not c.is_zero:
m = c.degree(DE.t)
if n < m:
raise NonElementaryIntegralException
# a1 = b + m*Dt/t
a1 = b.as_expr()
with DecrementLevel(DE):
# TODO: Write a dummy function that does this idiom
a1a, a1d = frac_in(a1, DE.t)
a1a = a1a*etad + etaa*a1d*Poly(m, DE.t)
a1d = a1d*etad
a2a, a2d = frac_in(c.LC(), DE.t)
sa, sd = rischDE(a1a, a1d, a2a, a2d, DE)
stm = Poly(sa.as_expr()/sd.as_expr()*DE.t**m, DE.t, expand=False)
q += stm
n = m - 1
c -= b*stm + derivation(stm, DE) # deg(c) becomes smaller
return q
def solve_poly_rde(b, cQ, n, DE, parametric=False):
"""
Solve a Polynomial Risch Differential Equation with degree bound ``n``.
This constitutes step 4 of the outline given in the rde.py docstring.
For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
[q1, ..., qm], a list of Polys.
"""
# No cancellation
if not b.is_zero and (DE.case == 'base' or
b.degree(DE.t) > max(0, DE.d.degree(DE.t) - 1)):
if parametric:
# Delayed imports
from .prde import prde_no_cancel_b_large
return prde_no_cancel_b_large(b, cQ, n, DE)
return no_cancel_b_large(b, cQ, n, DE)
elif (b.is_zero or b.degree(DE.t) < DE.d.degree(DE.t) - 1) and \
(DE.case == 'base' or DE.d.degree(DE.t) >= 2):
if parametric:
from .prde import prde_no_cancel_b_small
return prde_no_cancel_b_small(b, cQ, n, DE)
R = no_cancel_b_small(b, cQ, n, DE)
if isinstance(R, Poly):
return R
else:
# XXX: Might k be a field? (pg. 209)
h, b0, c0 = R
with DecrementLevel(DE):
b0, c0 = b0.as_poly(DE.t), c0.as_poly(DE.t)
if b0 is None: # See above comment
raise ValueError("b0 should be a non-Null value")
if c0 is None:
raise ValueError("c0 should be a non-Null value")
y = solve_poly_rde(b0, c0, n, DE).as_poly(DE.t)
return h + y
elif DE.d.degree(DE.t) >= 2 and b.degree(DE.t) == DE.d.degree(DE.t) - 1 and \
n > -b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC():
# TODO: Is this check necessary, and if so, what should it do if it fails?
# b comes from the first element returned from spde()
if not b.as_poly(DE.t).LC().is_number:
raise TypeError("Result should be a number")
if parametric:
raise NotImplementedError("prde_no_cancel_b_equal() is not yet "
"implemented.")
R = no_cancel_equal(b, cQ, n, DE)
if isinstance(R, Poly):
return R
else:
h, m, C = R
# XXX: Or should it be rischDE()?
y = solve_poly_rde(b, C, m, DE)
return h + y
else:
# Cancellation
if b.is_zero:
raise NotImplementedError("Remaining cases for Poly (P)RDE are "
"not yet implemented (is_deriv_in_field() required).")
else:
if DE.case == 'exp':
if parametric:
raise NotImplementedError("Parametric RDE cancellation "
"hyperexponential case is not yet implemented.")
return cancel_exp(b, cQ, n, DE)
elif DE.case == 'primitive':
if parametric:
raise NotImplementedError("Parametric RDE cancellation "
"primitive case is not yet implemented.")
return cancel_primitive(b, cQ, n, DE)
else:
raise NotImplementedError("Other Poly (P)RDE cancellation "
"cases are not yet implemented (%s)." % DE.case)
if parametric:
raise NotImplementedError("Remaining cases for Poly PRDE not yet "
"implemented.")
raise NotImplementedError("Remaining cases for Poly RDE not yet "
"implemented.")
def rischDE(fa, fd, ga, gd, DE):
"""
Solve a Risch Differential Equation: Dy + f*y == g.
Explanation
===========
See the outline in the docstring of rde.py for more information
about the procedure used. Either raise NonElementaryIntegralException, in
which case there is no solution y in the given differential field,
or return y in k(t) satisfying Dy + f*y == g, or raise
NotImplementedError, in which case, the algorithms necessary to
solve the given Risch Differential Equation have not yet been
implemented.
"""
_, (fa, fd) = weak_normalizer(fa, fd, DE)
a, (ba, bd), (ca, cd), hn = normal_denom(fa, fd, ga, gd, DE)
A, B, C, hs = special_denom(a, ba, bd, ca, cd, DE)
try:
# Until this is fully implemented, use oo. Note that this will almost
# certainly cause non-termination in spde() (unless A == 1), and
# *might* lead to non-termination in the next step for a nonelementary
# integral (I don't know for certain yet). Fortunately, spde() is
# currently written recursively, so this will just give
# RuntimeError: maximum recursion depth exceeded.
n = bound_degree(A, B, C, DE)
except NotImplementedError:
# Useful for debugging:
# import warnings
# warnings.warn("rischDE: Proceeding with n = oo; may cause "
# "non-termination.")
n = oo
B, C, m, alpha, beta = spde(A, B, C, n, DE)
if C.is_zero:
y = C
else:
y = solve_poly_rde(B, C, m, DE)
return (alpha*y + beta, hn*hs)
|