Spaces:
Sleeping
Sleeping
File size: 67,353 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 |
"""
The Risch Algorithm for transcendental function integration.
The core algorithms for the Risch algorithm are here. The subproblem
algorithms are in the rde.py and prde.py files for the Risch
Differential Equation solver and the parametric problems solvers,
respectively. All important information concerning the differential extension
for an integrand is stored in a DifferentialExtension object, which in the code
is usually called DE. Throughout the code and Inside the DifferentialExtension
object, the conventions/attribute names are that the base domain is QQ and each
differential extension is x, t0, t1, ..., tn-1 = DE.t. DE.x is the variable of
integration (Dx == 1), DE.D is a list of the derivatives of
x, t1, t2, ..., tn-1 = t, DE.T is the list [x, t1, t2, ..., tn-1], DE.t is the
outer-most variable of the differential extension at the given level (the level
can be adjusted using DE.increment_level() and DE.decrement_level()),
k is the field C(x, t0, ..., tn-2), where C is the constant field. The
numerator of a fraction is denoted by a and the denominator by
d. If the fraction is named f, fa == numer(f) and fd == denom(f).
Fractions are returned as tuples (fa, fd). DE.d and DE.t are used to
represent the topmost derivation and extension variable, respectively.
The docstring of a function signifies whether an argument is in k[t], in
which case it will just return a Poly in t, or in k(t), in which case it
will return the fraction (fa, fd). Other variable names probably come
from the names used in Bronstein's book.
"""
from types import GeneratorType
from functools import reduce
from sympy.core.function import Lambda
from sympy.core.mul import Mul
from sympy.core.intfunc import ilcm
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.symbol import Dummy, Symbol
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh,
tanh)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (atan, sin, cos,
tan, acot, cot, asin, acos)
from .integrals import integrate, Integral
from .heurisch import _symbols
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polytools import (real_roots, cancel, Poly, gcd,
reduced)
from sympy.polys.rootoftools import RootSum
from sympy.utilities.iterables import numbered_symbols
def integer_powers(exprs):
"""
Rewrites a list of expressions as integer multiples of each other.
Explanation
===========
For example, if you have [x, x/2, x**2 + 1, 2*x/3], then you can rewrite
this as [(x/6) * 6, (x/6) * 3, (x**2 + 1) * 1, (x/6) * 4]. This is useful
in the Risch integration algorithm, where we must write exp(x) + exp(x/2)
as (exp(x/2))**2 + exp(x/2), but not as exp(x) + sqrt(exp(x)) (this is
because only the transcendental case is implemented and we therefore cannot
integrate algebraic extensions). The integer multiples returned by this
function for each term are the smallest possible (their content equals 1).
Returns a list of tuples where the first element is the base term and the
second element is a list of `(item, factor)` terms, where `factor` is the
integer multiplicative factor that must multiply the base term to obtain
the original item.
The easiest way to understand this is to look at an example:
>>> from sympy.abc import x
>>> from sympy.integrals.risch import integer_powers
>>> integer_powers([x, x/2, x**2 + 1, 2*x/3])
[(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (x**2 + 1, [(x**2 + 1, 1)])]
We can see how this relates to the example at the beginning of the
docstring. It chose x/6 as the first base term. Then, x can be written as
(x/2) * 2, so we get (0, 2), and so on. Now only element (x**2 + 1)
remains, and there are no other terms that can be written as a rational
multiple of that, so we get that it can be written as (x**2 + 1) * 1.
"""
# Here is the strategy:
# First, go through each term and determine if it can be rewritten as a
# rational multiple of any of the terms gathered so far.
# cancel(a/b).is_Rational is sufficient for this. If it is a multiple, we
# add its multiple to the dictionary.
terms = {}
for term in exprs:
for trm, trm_list in terms.items():
a = cancel(term/trm)
if a.is_Rational:
trm_list.append((term, a))
break
else:
terms[term] = [(term, S.One)]
# After we have done this, we have all the like terms together, so we just
# need to find a common denominator so that we can get the base term and
# integer multiples such that each term can be written as an integer
# multiple of the base term, and the content of the integers is 1.
newterms = {}
for term, term_list in terms.items():
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for _, i in
term_list])
newterm = term/common_denom
newmults = [(i, j*common_denom) for i, j in term_list]
newterms[newterm] = newmults
return sorted(iter(newterms.items()), key=lambda item: item[0].sort_key())
class DifferentialExtension:
"""
A container for all the information relating to a differential extension.
Explanation
===========
The attributes of this object are (see also the docstring of __init__):
- f: The original (Expr) integrand.
- x: The variable of integration.
- T: List of variables in the extension.
- D: List of derivations in the extension; corresponds to the elements of T.
- fa: Poly of the numerator of the integrand.
- fd: Poly of the denominator of the integrand.
- Tfuncs: Lambda() representations of each element of T (except for x).
For back-substitution after integration.
- backsubs: A (possibly empty) list of further substitutions to be made on
the final integral to make it look more like the integrand.
- exts:
- extargs:
- cases: List of string representations of the cases of T.
- t: The top level extension variable, as defined by the current level
(see level below).
- d: The top level extension derivation, as defined by the current
derivation (see level below).
- case: The string representation of the case of self.d.
(Note that self.T and self.D will always contain the complete extension,
regardless of the level. Therefore, you should ALWAYS use DE.t and DE.d
instead of DE.T[-1] and DE.D[-1]. If you want to have a list of the
derivations or variables only up to the current level, use
DE.D[:len(DE.D) + DE.level + 1] and DE.T[:len(DE.T) + DE.level + 1]. Note
that, in particular, the derivation() function does this.)
The following are also attributes, but will probably not be useful other
than in internal use:
- newf: Expr form of fa/fd.
- level: The number (between -1 and -len(self.T)) such that
self.T[self.level] == self.t and self.D[self.level] == self.d.
Use the methods self.increment_level() and self.decrement_level() to change
the current level.
"""
# __slots__ is defined mainly so we can iterate over all the attributes
# of the class easily (the memory use doesn't matter too much, since we
# only create one DifferentialExtension per integration). Also, it's nice
# to have a safeguard when debugging.
__slots__ = ('f', 'x', 'T', 'D', 'fa', 'fd', 'Tfuncs', 'backsubs',
'exts', 'extargs', 'cases', 'case', 't', 'd', 'newf', 'level',
'ts', 'dummy')
def __init__(self, f=None, x=None, handle_first='log', dummy=False, extension=None, rewrite_complex=None):
"""
Tries to build a transcendental extension tower from ``f`` with respect to ``x``.
Explanation
===========
If it is successful, creates a DifferentialExtension object with, among
others, the attributes fa, fd, D, T, Tfuncs, and backsubs such that
fa and fd are Polys in T[-1] with rational coefficients in T[:-1],
fa/fd == f, and D[i] is a Poly in T[i] with rational coefficients in
T[:i] representing the derivative of T[i] for each i from 1 to len(T).
Tfuncs is a list of Lambda objects for back replacing the functions
after integrating. Lambda() is only used (instead of lambda) to make
them easier to test and debug. Note that Tfuncs corresponds to the
elements of T, except for T[0] == x, but they should be back-substituted
in reverse order. backsubs is a (possibly empty) back-substitution list
that should be applied on the completed integral to make it look more
like the original integrand.
If it is unsuccessful, it raises NotImplementedError.
You can also create an object by manually setting the attributes as a
dictionary to the extension keyword argument. You must include at least
D. Warning, any attribute that is not given will be set to None. The
attributes T, t, d, cases, case, x, and level are set automatically and
do not need to be given. The functions in the Risch Algorithm will NOT
check to see if an attribute is None before using it. This also does not
check to see if the extension is valid (non-algebraic) or even if it is
self-consistent. Therefore, this should only be used for
testing/debugging purposes.
"""
# XXX: If you need to debug this function, set the break point here
if extension:
if 'D' not in extension:
raise ValueError("At least the key D must be included with "
"the extension flag to DifferentialExtension.")
for attr in extension:
setattr(self, attr, extension[attr])
self._auto_attrs()
return
elif f is None or x is None:
raise ValueError("Either both f and x or a manual extension must "
"be given.")
if handle_first not in ('log', 'exp'):
raise ValueError("handle_first must be 'log' or 'exp', not %s." %
str(handle_first))
# f will be the original function, self.f might change if we reset
# (e.g., we pull out a constant from an exponential)
self.f = f
self.x = x
# setting the default value 'dummy'
self.dummy = dummy
self.reset()
exp_new_extension, log_new_extension = True, True
# case of 'automatic' choosing
if rewrite_complex is None:
rewrite_complex = I in self.f.atoms()
if rewrite_complex:
rewritables = {
(sin, cos, cot, tan, sinh, cosh, coth, tanh): exp,
(asin, acos, acot, atan): log,
}
# rewrite the trigonometric components
for candidates, rule in rewritables.items():
self.newf = self.newf.rewrite(candidates, rule)
self.newf = cancel(self.newf)
else:
if any(i.has(x) for i in self.f.atoms(sin, cos, tan, atan, asin, acos)):
raise NotImplementedError("Trigonometric extensions are not "
"supported (yet!)")
exps = set()
pows = set()
numpows = set()
sympows = set()
logs = set()
symlogs = set()
while True:
if self.newf.is_rational_function(*self.T):
break
if not exp_new_extension and not log_new_extension:
# We couldn't find a new extension on the last pass, so I guess
# we can't do it.
raise NotImplementedError("Couldn't find an elementary "
"transcendental extension for %s. Try using a " % str(f) +
"manual extension with the extension flag.")
exps, pows, numpows, sympows, log_new_extension = \
self._rewrite_exps_pows(exps, pows, numpows, sympows, log_new_extension)
logs, symlogs = self._rewrite_logs(logs, symlogs)
if handle_first == 'exp' or not log_new_extension:
exp_new_extension = self._exp_part(exps)
if exp_new_extension is None:
# reset and restart
self.f = self.newf
self.reset()
exp_new_extension = True
continue
if handle_first == 'log' or not exp_new_extension:
log_new_extension = self._log_part(logs)
self.fa, self.fd = frac_in(self.newf, self.t)
self._auto_attrs()
return
def __getattr__(self, attr):
# Avoid AttributeErrors when debugging
if attr not in self.__slots__:
raise AttributeError("%s has no attribute %s" % (repr(self), repr(attr)))
return None
def _rewrite_exps_pows(self, exps, pows, numpows,
sympows, log_new_extension):
"""
Rewrite exps/pows for better processing.
"""
from .prde import is_deriv_k
# Pre-preparsing.
#################
# Get all exp arguments, so we can avoid ahead of time doing
# something like t1 = exp(x), t2 = exp(x/2) == sqrt(t1).
# Things like sqrt(exp(x)) do not automatically simplify to
# exp(x/2), so they will be viewed as algebraic. The easiest way
# to handle this is to convert all instances of exp(a)**Rational
# to exp(Rational*a) before doing anything else. Note that the
# _exp_part code can generate terms of this form, so we do need to
# do this at each pass (or else modify it to not do that).
ratpows = [i for i in self.newf.atoms(Pow)
if (isinstance(i.base, exp) and i.exp.is_Rational)]
ratpows_repl = [
(i, i.base.base**(i.exp*i.base.exp)) for i in ratpows]
self.backsubs += [(j, i) for i, j in ratpows_repl]
self.newf = self.newf.xreplace(dict(ratpows_repl))
# To make the process deterministic, the args are sorted
# so that functions with smaller op-counts are processed first.
# Ties are broken with the default_sort_key.
# XXX Although the method is deterministic no additional work
# has been done to guarantee that the simplest solution is
# returned and that it would be affected be using different
# variables. Though it is possible that this is the case
# one should know that it has not been done intentionally, so
# further improvements may be possible.
# TODO: This probably doesn't need to be completely recomputed at
# each pass.
exps = update_sets(exps, self.newf.atoms(exp),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
pows = update_sets(pows, self.newf.atoms(Pow),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
numpows = update_sets(numpows, set(pows),
lambda i: not i.base.has(*self.T))
sympows = update_sets(sympows, set(pows) - set(numpows),
lambda i: i.base.is_rational_function(*self.T) and
not i.exp.is_Integer)
# The easiest way to deal with non-base E powers is to convert them
# into base E, integrate, and then convert back.
for i in ordered(pows):
old = i
new = exp(i.exp*log(i.base))
# If exp is ever changed to automatically reduce exp(x*log(2))
# to 2**x, then this will break. The solution is to not change
# exp to do that :)
if i in sympows:
if i.exp.is_Rational:
raise NotImplementedError("Algebraic extensions are "
"not supported (%s)." % str(i))
# We can add a**b only if log(a) in the extension, because
# a**b == exp(b*log(a)).
basea, based = frac_in(i.base, self.t)
A = is_deriv_k(basea, based, self)
if A is None:
# Nonelementary monomial (so far)
# TODO: Would there ever be any benefit from just
# adding log(base) as a new monomial?
# ANSWER: Yes, otherwise we can't integrate x**x (or
# rather prove that it has no elementary integral)
# without first manually rewriting it as exp(x*log(x))
self.newf = self.newf.xreplace({old: new})
self.backsubs += [(new, old)]
log_new_extension = self._log_part([log(i.base)])
exps = update_sets(exps, self.newf.atoms(exp), lambda i:
i.exp.is_rational_function(*self.T) and i.exp.has(*self.T))
continue
ans, u, const = A
newterm = exp(i.exp*(log(const) + u))
# Under the current implementation, exp kills terms
# only if they are of the form a*log(x), where a is a
# Number. This case should have already been killed by the
# above tests. Again, if this changes to kill more than
# that, this will break, which maybe is a sign that you
# shouldn't be changing that. Actually, if anything, this
# auto-simplification should be removed. See
# https://groups.google.com/group/sympy/browse_thread/thread/a61d48235f16867f
self.newf = self.newf.xreplace({i: newterm})
elif i not in numpows:
continue
else:
# i in numpows
newterm = new
# TODO: Just put it in self.Tfuncs
self.backsubs.append((new, old))
self.newf = self.newf.xreplace({old: newterm})
exps.append(newterm)
return exps, pows, numpows, sympows, log_new_extension
def _rewrite_logs(self, logs, symlogs):
"""
Rewrite logs for better processing.
"""
atoms = self.newf.atoms(log)
logs = update_sets(logs, atoms,
lambda i: i.args[0].is_rational_function(*self.T) and
i.args[0].has(*self.T))
symlogs = update_sets(symlogs, atoms,
lambda i: i.has(*self.T) and i.args[0].is_Pow and
i.args[0].base.is_rational_function(*self.T) and
not i.args[0].exp.is_Integer)
# We can handle things like log(x**y) by converting it to y*log(x)
# This will fix not only symbolic exponents of the argument, but any
# non-Integer exponent, like log(sqrt(x)). The exponent can also
# depend on x, like log(x**x).
for i in ordered(symlogs):
# Unlike in the exponential case above, we do not ever
# potentially add new monomials (above we had to add log(a)).
# Therefore, there is no need to run any is_deriv functions
# here. Just convert log(a**b) to b*log(a) and let
# log_new_extension() handle it from there.
lbase = log(i.args[0].base)
logs.append(lbase)
new = i.args[0].exp*lbase
self.newf = self.newf.xreplace({i: new})
self.backsubs.append((new, i))
# remove any duplicates
logs = sorted(set(logs), key=default_sort_key)
return logs, symlogs
def _auto_attrs(self):
"""
Set attributes that are generated automatically.
"""
if not self.T:
# i.e., when using the extension flag and T isn't given
self.T = [i.gen for i in self.D]
if not self.x:
self.x = self.T[0]
self.cases = [get_case(d, t) for d, t in zip(self.D, self.T)]
self.level = -1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
def _exp_part(self, exps):
"""
Try to build an exponential extension.
Returns
=======
Returns True if there was a new extension, False if there was no new
extension but it was able to rewrite the given exponentials in terms
of the existing extension, and None if the entire extension building
process should be restarted. If the process fails because there is no
way around an algebraic extension (e.g., exp(log(x)/2)), it will raise
NotImplementedError.
"""
from .prde import is_log_deriv_k_t_radical
new_extension = False
restart = False
expargs = [i.exp for i in exps]
ip = integer_powers(expargs)
for arg, others in ip:
# Minimize potential problems with algebraic substitution
others.sort(key=lambda i: i[1])
arga, argd = frac_in(arg, self.t)
A = is_log_deriv_k_t_radical(arga, argd, self)
if A is not None:
ans, u, n, const = A
# if n is 1 or -1, it's algebraic, but we can handle it
if n == -1:
# This probably will never happen, because
# Rational.as_numer_denom() returns the negative term in
# the numerator. But in case that changes, reduce it to
# n == 1.
n = 1
u **= -1
const *= -1
ans = [(i, -j) for i, j in ans]
if n == 1:
# Example: exp(x + x**2) over QQ(x, exp(x), exp(x**2))
self.newf = self.newf.xreplace({exp(arg): exp(const)*Mul(*[
u**power for u, power in ans])})
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p) * Mul(*[u**power for u, power in ans])
for exparg, p in others})
# TODO: Add something to backsubs to put exp(const*p)
# back together.
continue
else:
# Bad news: we have an algebraic radical. But maybe we
# could still avoid it by choosing a different extension.
# For example, integer_powers() won't handle exp(x/2 + 1)
# over QQ(x, exp(x)), but if we pull out the exp(1), it
# will. Or maybe we have exp(x + x**2/2), over
# QQ(x, exp(x), exp(x**2)), which is exp(x)*sqrt(exp(x**2)),
# but if we use QQ(x, exp(x), exp(x**2/2)), then they will
# all work.
#
# So here is what we do: If there is a non-zero const, pull
# it out and retry. Also, if len(ans) > 1, then rewrite
# exp(arg) as the product of exponentials from ans, and
# retry that. If const == 0 and len(ans) == 1, then we
# assume that it would have been handled by either
# integer_powers() or n == 1 above if it could be handled,
# so we give up at that point. For example, you can never
# handle exp(log(x)/2) because it equals sqrt(x).
if const or len(ans) > 1:
rad = Mul(*[term**(power/n) for term, power in ans])
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p)*rad for exparg, p in others})
self.newf = self.newf.xreplace(dict(list(zip(reversed(self.T),
reversed([f(self.x) for f in self.Tfuncs])))))
restart = True
break
else:
# TODO: give algebraic dependence in error string
raise NotImplementedError("Cannot integrate over "
"algebraic extensions.")
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darga, dargd = darga.cancel(dargd, include=True)
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('exp')
self.D.append(darg.as_poly(self.t, expand=False)*Poly(self.t,
self.t, expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, exp(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace(
{exp(exparg): self.t**p for exparg, p in others})
new_extension = True
if restart:
return None
return new_extension
def _log_part(self, logs):
"""
Try to build a logarithmic extension.
Returns
=======
Returns True if there was a new extension and False if there was no new
extension but it was able to rewrite the given logarithms in terms
of the existing extension. Unlike with exponential extensions, there
is no way that a logarithm is not transcendental over and cannot be
rewritten in terms of an already existing extension in a non-algebraic
way, so this function does not ever return None or raise
NotImplementedError.
"""
from .prde import is_deriv_k
new_extension = False
logargs = [i.args[0] for i in logs]
for arg in ordered(logargs):
# The log case is easier, because whenever a logarithm is algebraic
# over the base field, it is of the form a1*t1 + ... an*tn + c,
# which is a polynomial, so we can just replace it with that.
# In other words, we don't have to worry about radicals.
arga, argd = frac_in(arg, self.t)
A = is_deriv_k(arga, argd, self)
if A is not None:
ans, u, const = A
newterm = log(const) + u
self.newf = self.newf.xreplace({log(arg): newterm})
continue
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('log')
self.D.append(cancel(darg.as_expr()/arg).as_poly(self.t,
expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, log(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace({log(arg): self.t})
new_extension = True
return new_extension
@property
def _important_attrs(self):
"""
Returns some of the more important attributes of self.
Explanation
===========
Used for testing and debugging purposes.
The attributes are (fa, fd, D, T, Tfuncs, backsubs,
exts, extargs).
"""
return (self.fa, self.fd, self.D, self.T, self.Tfuncs,
self.backsubs, self.exts, self.extargs)
# NOTE: this printing doesn't follow the Python's standard
# eval(repr(DE)) == DE, where DE is the DifferentialExtension object,
# also this printing is supposed to contain all the important
# attributes of a DifferentialExtension object
def __repr__(self):
# no need to have GeneratorType object printed in it
r = [(attr, getattr(self, attr)) for attr in self.__slots__
if not isinstance(getattr(self, attr), GeneratorType)]
return self.__class__.__name__ + '(dict(%r))' % (r)
# fancy printing of DifferentialExtension object
def __str__(self):
return (self.__class__.__name__ + '({fa=%s, fd=%s, D=%s})' %
(self.fa, self.fd, self.D))
# should only be used for debugging purposes, internally
# f1 = f2 = log(x) at different places in code execution
# may return D1 != D2 as True, since 'level' or other attribute
# may differ
def __eq__(self, other):
for attr in self.__class__.__slots__:
d1, d2 = getattr(self, attr), getattr(other, attr)
if not (isinstance(d1, GeneratorType) or d1 == d2):
return False
return True
def reset(self):
"""
Reset self to an initial state. Used by __init__.
"""
self.t = self.x
self.T = [self.x]
self.D = [Poly(1, self.x)]
self.level = -1
self.exts = [None]
self.extargs = [None]
if self.dummy:
self.ts = numbered_symbols('t', cls=Dummy)
else:
# For testing
self.ts = numbered_symbols('t')
# For various things that we change to make things work that we need to
# change back when we are done.
self.backsubs = []
self.Tfuncs = []
self.newf = self.f
def indices(self, extension):
"""
Parameters
==========
extension : str
Represents a valid extension type.
Returns
=======
list: A list of indices of 'exts' where extension of
type 'extension' is present.
Examples
========
>>> from sympy.integrals.risch import DifferentialExtension
>>> from sympy import log, exp
>>> from sympy.abc import x
>>> DE = DifferentialExtension(log(x) + exp(x), x, handle_first='exp')
>>> DE.indices('log')
[2]
>>> DE.indices('exp')
[1]
"""
return [i for i, ext in enumerate(self.exts) if ext == extension]
def increment_level(self):
"""
Increment the level of self.
Explanation
===========
This makes the working differential extension larger. self.level is
given relative to the end of the list (-1, -2, etc.), so we do not need
do worry about it when building the extension.
"""
if self.level >= -1:
raise ValueError("The level of the differential extension cannot "
"be incremented any further.")
self.level += 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def decrement_level(self):
"""
Decrease the level of self.
Explanation
===========
This makes the working differential extension smaller. self.level is
given relative to the end of the list (-1, -2, etc.), so we do not need
do worry about it when building the extension.
"""
if self.level <= -len(self.T):
raise ValueError("The level of the differential extension cannot "
"be decremented any further.")
self.level -= 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def update_sets(seq, atoms, func):
s = set(seq)
s = atoms.intersection(s)
new = atoms - s
s.update(list(filter(func, new)))
return list(s)
class DecrementLevel:
"""
A context manager for decrementing the level of a DifferentialExtension.
"""
__slots__ = ('DE',)
def __init__(self, DE):
self.DE = DE
return
def __enter__(self):
self.DE.decrement_level()
def __exit__(self, exc_type, exc_value, traceback):
self.DE.increment_level()
class NonElementaryIntegralException(Exception):
"""
Exception used by subroutines within the Risch algorithm to indicate to one
another that the function being integrated does not have an elementary
integral in the given differential field.
"""
# TODO: Rewrite algorithms below to use this (?)
# TODO: Pass through information about why the integral was nonelementary,
# and store that in the resulting NonElementaryIntegral somehow.
pass
def gcdex_diophantine(a, b, c):
"""
Extended Euclidean Algorithm, Diophantine version.
Explanation
===========
Given ``a``, ``b`` in K[x] and ``c`` in (a, b), the ideal generated by ``a`` and
``b``, return (s, t) such that s*a + t*b == c and either s == 0 or s.degree()
< b.degree().
"""
# Extended Euclidean Algorithm (Diophantine Version) pg. 13
# TODO: This should go in densetools.py.
# XXX: Bettter name?
s, g = a.half_gcdex(b)
s *= c.exquo(g) # Inexact division means c is not in (a, b)
if s and s.degree() >= b.degree():
_, s = s.div(b)
t = (c - s*a).exquo(b)
return (s, t)
def frac_in(f, t, *, cancel=False, **kwargs):
"""
Returns the tuple (fa, fd), where fa and fd are Polys in t.
Explanation
===========
This is a common idiom in the Risch Algorithm functions, so we abstract
it out here. ``f`` should be a basic expression, a Poly, or a tuple (fa, fd),
where fa and fd are either basic expressions or Polys, and f == fa/fd.
**kwargs are applied to Poly.
"""
if isinstance(f, tuple):
fa, fd = f
f = fa.as_expr()/fd.as_expr()
fa, fd = f.as_expr().as_numer_denom()
fa, fd = fa.as_poly(t, **kwargs), fd.as_poly(t, **kwargs)
if cancel:
fa, fd = fa.cancel(fd, include=True)
if fa is None or fd is None:
raise ValueError("Could not turn %s into a fraction in %s." % (f, t))
return (fa, fd)
def as_poly_1t(p, t, z):
"""
(Hackish) way to convert an element ``p`` of K[t, 1/t] to K[t, z].
In other words, ``z == 1/t`` will be a dummy variable that Poly can handle
better.
See issue 5131.
Examples
========
>>> from sympy import random_poly
>>> from sympy.integrals.risch import as_poly_1t
>>> from sympy.abc import x, z
>>> p1 = random_poly(x, 10, -10, 10)
>>> p2 = random_poly(x, 10, -10, 10)
>>> p = p1 + p2.subs(x, 1/x)
>>> as_poly_1t(p, x, z).as_expr().subs(z, 1/x) == p
True
"""
# TODO: Use this on the final result. That way, we can avoid answers like
# (...)*exp(-x).
pa, pd = frac_in(p, t, cancel=True)
if not pd.is_monomial:
# XXX: Is there a better Poly exception that we could raise here?
# Either way, if you see this (from the Risch Algorithm) it indicates
# a bug.
raise PolynomialError("%s is not an element of K[%s, 1/%s]." % (p, t, t))
t_part, remainder = pa.div(pd)
ans = t_part.as_poly(t, z, expand=False)
if remainder:
one = remainder.one
tp = t*one
r = pd.degree() - remainder.degree()
z_part = remainder.transform(one, tp) * tp**r
z_part = z_part.replace(t, z).to_field().quo_ground(pd.LC())
ans += z_part.as_poly(t, z, expand=False)
return ans
def derivation(p, DE, coefficientD=False, basic=False):
"""
Computes Dp.
Explanation
===========
Given the derivation D with D = d/dx and p is a polynomial in t over
K(x), return Dp.
If coefficientD is True, it computes the derivation kD
(kappaD), which is defined as kD(sum(ai*Xi**i, (i, 0, n))) ==
sum(Dai*Xi**i, (i, 1, n)) (Definition 3.2.2, page 80). X in this case is
T[-1], so coefficientD computes the derivative just with respect to T[:-1],
with T[-1] treated as a constant.
If ``basic=True``, the returns a Basic expression. Elements of D can still be
instances of Poly.
"""
if basic:
r = 0
else:
r = Poly(0, DE.t)
t = DE.t
if coefficientD:
if DE.level <= -len(DE.T):
# 'base' case, the answer is 0.
return r
DE.decrement_level()
D = DE.D[:len(DE.D) + DE.level + 1]
T = DE.T[:len(DE.T) + DE.level + 1]
for d, v in zip(D, T):
pv = p.as_poly(v)
if pv is None or basic:
pv = p.as_expr()
if basic:
r += d.as_expr()*pv.diff(v)
else:
r += (d.as_expr()*pv.diff(v).as_expr()).as_poly(t)
if basic:
r = cancel(r)
if coefficientD:
DE.increment_level()
return r
def get_case(d, t):
"""
Returns the type of the derivation d.
Returns one of {'exp', 'tan', 'base', 'primitive', 'other_linear',
'other_nonlinear'}.
"""
if not d.expr.has(t):
if d.is_one:
return 'base'
return 'primitive'
if d.rem(Poly(t, t)).is_zero:
return 'exp'
if d.rem(Poly(1 + t**2, t)).is_zero:
return 'tan'
if d.degree(t) > 1:
return 'other_nonlinear'
return 'other_linear'
def splitfactor(p, DE, coefficientD=False, z=None):
"""
Splitting factorization.
Explanation
===========
Given a derivation D on k[t] and ``p`` in k[t], return (p_n, p_s) in
k[t] x k[t] such that p = p_n*p_s, p_s is special, and each square
factor of p_n is normal.
Page. 100
"""
kinv = [1/x for x in DE.T[:DE.level]]
if z:
kinv.append(z)
One = Poly(1, DE.t, domain=p.get_domain())
Dp = derivation(p, DE, coefficientD=coefficientD)
# XXX: Is this right?
if p.is_zero:
return (p, One)
if not p.expr.has(DE.t):
s = p.as_poly(*kinv).gcd(Dp.as_poly(*kinv)).as_poly(DE.t)
n = p.exquo(s)
return (n, s)
if not Dp.is_zero:
h = p.gcd(Dp).to_field()
g = p.gcd(p.diff(DE.t)).to_field()
s = h.exquo(g)
if s.degree(DE.t) == 0:
return (p, One)
q_split = splitfactor(p.exquo(s), DE, coefficientD=coefficientD)
return (q_split[0], q_split[1]*s)
else:
return (p, One)
def splitfactor_sqf(p, DE, coefficientD=False, z=None, basic=False):
"""
Splitting Square-free Factorization.
Explanation
===========
Given a derivation D on k[t] and ``p`` in k[t], returns (N1, ..., Nm)
and (S1, ..., Sm) in k[t]^m such that p =
(N1*N2**2*...*Nm**m)*(S1*S2**2*...*Sm**m) is a splitting
factorization of ``p`` and the Ni and Si are square-free and coprime.
"""
# TODO: This algorithm appears to be faster in every case
# TODO: Verify this and splitfactor() for multiple extensions
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if z:
kkinv = [z]
S = []
N = []
p_sqf = p.sqf_list_include()
if p.is_zero:
return (((p, 1),), ())
for pi, i in p_sqf:
Si = pi.as_poly(*kkinv).gcd(derivation(pi, DE,
coefficientD=coefficientD,basic=basic).as_poly(*kkinv)).as_poly(DE.t)
pi = Poly(pi, DE.t)
Si = Poly(Si, DE.t)
Ni = pi.exquo(Si)
if not Si.is_one:
S.append((Si, i))
if not Ni.is_one:
N.append((Ni, i))
return (tuple(N), tuple(S))
def canonical_representation(a, d, DE):
"""
Canonical Representation.
Explanation
===========
Given a derivation D on k[t] and f = a/d in k(t), return (f_p, f_s,
f_n) in k[t] x k(t) x k(t) such that f = f_p + f_s + f_n is the
canonical representation of f (f_p is a polynomial, f_s is reduced
(has a special denominator), and f_n is simple (has a normal
denominator).
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
q, r = a.div(d)
dn, ds = splitfactor(d, DE)
b, c = gcdex_diophantine(dn.as_poly(DE.t), ds.as_poly(DE.t), r.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
return (q, (b, ds), (c, dn))
def hermite_reduce(a, d, DE):
"""
Hermite Reduction - Mack's Linear Version.
Given a derivation D on k(t) and f = a/d in k(t), returns g, h, r in
k(t) such that f = Dg + h + r, h is simple, and r is reduced.
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
fp, fs, fn = canonical_representation(a, d, DE)
a, d = fn
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
ga = Poly(0, DE.t)
gd = Poly(1, DE.t)
dd = derivation(d, DE)
dm = gcd(d.to_field(), dd.to_field()).as_poly(DE.t)
ds, _ = d.div(dm)
while dm.degree(DE.t) > 0:
ddm = derivation(dm, DE)
dm2 = gcd(dm.to_field(), ddm.to_field())
dms, _ = dm.div(dm2)
ds_ddm = ds.mul(ddm)
ds_ddm_dm, _ = ds_ddm.div(dm)
b, c = gcdex_diophantine(-ds_ddm_dm.as_poly(DE.t),
dms.as_poly(DE.t), a.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
db = derivation(b, DE).as_poly(DE.t)
ds_dms, _ = ds.div(dms)
a = c.as_poly(DE.t) - db.mul(ds_dms).as_poly(DE.t)
ga = ga*dm + b*gd
gd = gd*dm
ga, gd = ga.cancel(gd, include=True)
dm = dm2
q, r = a.div(ds)
ga, gd = ga.cancel(gd, include=True)
r, d = r.cancel(ds, include=True)
rra = q*fs[1] + fp*fs[1] + fs[0]
rrd = fs[1]
rra, rrd = rra.cancel(rrd, include=True)
return ((ga, gd), (r, d), (rra, rrd))
def polynomial_reduce(p, DE):
"""
Polynomial Reduction.
Explanation
===========
Given a derivation D on k(t) and p in k[t] where t is a nonlinear
monomial over k, return q, r in k[t] such that p = Dq + r, and
deg(r) < deg_t(Dt).
"""
q = Poly(0, DE.t)
while p.degree(DE.t) >= DE.d.degree(DE.t):
m = p.degree(DE.t) - DE.d.degree(DE.t) + 1
q0 = Poly(DE.t**m, DE.t).mul(Poly(p.as_poly(DE.t).LC()/
(m*DE.d.LC()), DE.t))
q += q0
p = p - derivation(q0, DE)
return (q, p)
def laurent_series(a, d, F, n, DE):
"""
Contribution of ``F`` to the full partial fraction decomposition of A/D.
Explanation
===========
Given a field K of characteristic 0 and ``A``,``D``,``F`` in K[x] with D monic,
nonzero, coprime with A, and ``F`` the factor of multiplicity n in the square-
free factorization of D, return the principal parts of the Laurent series of
A/D at all the zeros of ``F``.
"""
if F.degree()==0:
return 0
Z = _symbols('z', n)
z = Symbol('z')
Z.insert(0, z)
delta_a = Poly(0, DE.t)
delta_d = Poly(1, DE.t)
E = d.quo(F**n)
ha, hd = (a, E*Poly(z**n, DE.t))
dF = derivation(F,DE)
B, _ = gcdex_diophantine(E, F, Poly(1,DE.t))
C, _ = gcdex_diophantine(dF, F, Poly(1,DE.t))
# initialization
F_store = F
V, DE_D_list, H_list= [], [], []
for j in range(0, n):
# jth derivative of z would be substituted with dfnth/(j+1) where dfnth =(d^n)f/(dx)^n
F_store = derivation(F_store, DE)
v = (F_store.as_expr())/(j + 1)
V.append(v)
DE_D_list.append(Poly(Z[j + 1],Z[j]))
DE_new = DifferentialExtension(extension = {'D': DE_D_list}) #a differential indeterminate
for j in range(0, n):
zEha = Poly(z**(n + j), DE.t)*E**(j + 1)*ha
zEhd = hd
Pa, Pd = cancel((zEha, zEhd))[1], cancel((zEha, zEhd))[2]
Q = Pa.quo(Pd)
for i in range(0, j + 1):
Q = Q.subs(Z[i], V[i])
Dha = (hd*derivation(ha, DE, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE, basic=True).as_poly(DE.t)
+ hd*derivation(ha, DE_new, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE_new, basic=True).as_poly(DE.t))
Dhd = Poly(j + 1, DE.t)*hd**2
ha, hd = Dha, Dhd
Ff, _ = F.div(gcd(F, Q))
F_stara, F_stard = frac_in(Ff, DE.t)
if F_stara.degree(DE.t) - F_stard.degree(DE.t) > 0:
QBC = Poly(Q, DE.t)*B**(1 + j)*C**(n + j)
H = QBC
H_list.append(H)
H = (QBC*F_stard).rem(F_stara)
alphas = real_roots(F_stara)
for alpha in list(alphas):
delta_a = delta_a*Poly((DE.t - alpha)**(n - j), DE.t) + Poly(H.eval(alpha), DE.t)
delta_d = delta_d*Poly((DE.t - alpha)**(n - j), DE.t)
return (delta_a, delta_d, H_list)
def recognize_derivative(a, d, DE, z=None):
"""
Compute the squarefree factorization of the denominator of f
and for each Di the polynomial H in K[x] (see Theorem 2.7.1), using the
LaurentSeries algorithm. Write Di = GiEi where Gj = gcd(Hn, Di) and
gcd(Ei,Hn) = 1. Since the residues of f at the roots of Gj are all 0, and
the residue of f at a root alpha of Ei is Hi(a) != 0, f is the derivative of a
rational function if and only if Ei = 1 for each i, which is equivalent to
Di | H[-1] for each i.
"""
flag =True
a, d = a.cancel(d, include=True)
_, r = a.div(d)
Np, Sp = splitfactor_sqf(d, DE, coefficientD=True, z=z)
j = 1
for s, _ in Sp:
delta_a, delta_d, H = laurent_series(r, d, s, j, DE)
g = gcd(d, H[-1]).as_poly()
if g is not d:
flag = False
break
j = j + 1
return flag
def recognize_log_derivative(a, d, DE, z=None):
"""
There exists a v in K(x)* such that f = dv/v
where f a rational function if and only if f can be written as f = A/D
where D is squarefree,deg(A) < deg(D), gcd(A, D) = 1,
and all the roots of the Rothstein-Trager resultant are integers. In that case,
any of the Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm
produces u in K(x) such that du/dx = uf.
"""
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
_, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
r, _ = d.resultant(q, includePRS=True)
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, _ in Sp:
# TODO also consider the complex roots which should
# turn the flag false
a = real_roots(s.as_poly(z))
if not all(j.is_Integer for j in a):
return False
return True
def residue_reduce(a, d, DE, z=None, invert=True):
"""
Lazard-Rioboo-Rothstein-Trager resultant reduction.
Explanation
===========
Given a derivation ``D`` on k(t) and f in k(t) simple, return g
elementary over k(t) and a Boolean b in {True, False} such that f -
Dg in k[t] if b == True or f + h and f + h - Dg do not have an
elementary integral over k(t) for any h in k<t> (reduced) if b ==
False.
Returns (G, b), where G is a tuple of tuples of the form (s_i, S_i),
such that g = Add(*[RootSum(s_i, lambda z: z*log(S_i(z, t))) for
S_i, s_i in G]). f - Dg is the remaining integral, which is elementary
only if b == True, and hence the integral of f is elementary only if
b == True.
f - Dg is not calculated in this function because that would require
explicitly calculating the RootSum. Use residue_reduce_derivation().
"""
# TODO: Use log_to_atan() from rationaltools.py
# If r = residue_reduce(...), then the logarithmic part is given by:
# sum([RootSum(a[0].as_poly(z), lambda i: i*log(a[1].as_expr()).subs(z,
# i)).subs(t, log(x)) for a in r[0]])
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
a, d = a.to_field().mul_ground(1/d.LC()), d.to_field().mul_ground(1/d.LC())
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if a.is_zero:
return ([], True)
_, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
if Dd.degree(DE.t) <= d.degree(DE.t):
r, R = d.resultant(q, includePRS=True)
else:
r, R = q.resultant(d, includePRS=True)
R_map, H = {}, []
for i in R:
R_map[i.degree()] = i
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
if i == d.degree(DE.t):
s = Poly(s, z).monic()
H.append((s, d))
else:
h = R_map.get(i)
if h is None:
continue
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True)
h_lc_sqf = h_lc.sqf_list_include(all=True)
for a, j in h_lc_sqf:
h = Poly(h, DE.t, field=True).exquo(Poly(gcd(a, s**j, *kkinv),
DE.t))
s = Poly(s, z).monic()
if invert:
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True, expand=False)
inv, coeffs = h_lc.as_poly(z, field=True).invert(s), [S.One]
for coeff in h.coeffs()[1:]:
L = reduced(inv*coeff.as_poly(inv.gens), [s])[1]
coeffs.append(L.as_expr())
h = Poly(dict(list(zip(h.monoms(), coeffs))), DE.t)
H.append((s, h))
b = not any(cancel(i.as_expr()).has(DE.t, z) for i, _ in Np)
return (H, b)
def residue_reduce_to_basic(H, DE, z):
"""
Converts the tuple returned by residue_reduce() into a Basic expression.
"""
# TODO: check what Lambda does with RootOf
i = Dummy('i')
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
return sum(RootSum(a[0].as_poly(z), Lambda(i, i*log(a[1].as_expr()).subs(
{z: i}).subs(s))) for a in H)
def residue_reduce_derivation(H, DE, z):
"""
Computes the derivation of an expression returned by residue_reduce().
In general, this is a rational function in t, so this returns an
as_expr() result.
"""
# TODO: verify that this is correct for multiple extensions
i = Dummy('i')
return S(sum(RootSum(a[0].as_poly(z), Lambda(i, i*derivation(a[1],
DE).as_expr().subs(z, i)/a[1].as_expr().subs(z, i))) for a in H))
def integrate_primitive_polynomial(p, DE):
"""
Integration of primitive polynomials.
Explanation
===========
Given a primitive monomial t over k, and ``p`` in k[t], return q in k[t],
r in k, and a bool b in {True, False} such that r = p - Dq is in k if b is
True, or r = p - Dq does not have an elementary integral over k(t) if b is
False.
"""
Zero = Poly(0, DE.t)
q = Poly(0, DE.t)
if not p.expr.has(DE.t):
return (Zero, p, True)
from .prde import limited_integrate
while True:
if not p.expr.has(DE.t):
return (q, p, True)
Dta, Dtb = frac_in(DE.d, DE.T[DE.level - 1])
with DecrementLevel(DE): # We had better be integrating the lowest extension (x)
# with ratint().
a = p.LC()
aa, ad = frac_in(a, DE.t)
try:
rv = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
if rv is None:
raise NonElementaryIntegralException
(ba, bd), c = rv
except NonElementaryIntegralException:
return (q, p, False)
m = p.degree(DE.t)
q0 = c[0].as_poly(DE.t)*Poly(DE.t**(m + 1)/(m + 1), DE.t) + \
(ba.as_expr()/bd.as_expr()).as_poly(DE.t)*Poly(DE.t**m, DE.t)
p = p - derivation(q0, DE)
q = q + q0
def integrate_primitive(a, d, DE, z=None):
"""
Integration of primitive functions.
Explanation
===========
Given a primitive monomial t over k and f in k(t), return g elementary over
k(t), i in k(t), and b in {True, False} such that i = f - Dg is in k if b
is True or i = f - Dg does not have an elementary integral over k(t) if b
is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
p = p.as_poly(DE.t)
q, i, b = integrate_primitive_polynomial(p, DE)
ret = ((g1[0].as_expr()/g1[1].as_expr() + q.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
if not b:
# TODO: This does not do the right thing when b is False
i = NonElementaryIntegral(cancel(i.as_expr()).subs(s), DE.x)
else:
i = cancel(i.as_expr())
return (ret, i, b)
def integrate_hyperexponential_polynomial(p, DE, z):
"""
Integration of hyperexponential polynomials.
Explanation
===========
Given a hyperexponential monomial t over k and ``p`` in k[t, 1/t], return q in
k[t, 1/t] and a bool b in {True, False} such that p - Dq in k if b is True,
or p - Dq does not have an elementary integral over k(t) if b is False.
"""
t1 = DE.t
dtt = DE.d.exquo(Poly(DE.t, DE.t))
qa = Poly(0, DE.t)
qd = Poly(1, DE.t)
b = True
if p.is_zero:
return(qa, qd, b)
from sympy.integrals.rde import rischDE
with DecrementLevel(DE):
for i in range(-p.degree(z), p.degree(t1) + 1):
if not i:
continue
elif i < 0:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
# But it shouldn't happen because p is already a Poly in t and z
a = p.as_poly(z, expand=False).nth(-i)
else:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
a = p.as_poly(t1, expand=False).nth(i)
aa, ad = frac_in(a, DE.t, field=True)
aa, ad = aa.cancel(ad, include=True)
iDt = Poly(i, t1)*dtt
iDta, iDtd = frac_in(iDt, DE.t, field=True)
try:
va, vd = rischDE(iDta, iDtd, Poly(aa, DE.t), Poly(ad, DE.t), DE)
va, vd = frac_in((va, vd), t1, cancel=True)
except NonElementaryIntegralException:
b = False
else:
qa = qa*vd + va*Poly(t1**i)*qd
qd *= vd
return (qa, qd, b)
def integrate_hyperexponential(a, d, DE, z=None, conds='piecewise'):
"""
Integration of hyperexponential functions.
Explanation
===========
Given a hyperexponential monomial t over k and f in k(t), return g
elementary over k(t), i in k(t), and a bool b in {True, False} such that
i = f - Dg is in k if b is True or i = f - Dg does not have an elementary
integral over k(t) if b is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i.subs(s)), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# p should be a polynomial in t and 1/t, because Sirr == k[t, 1/t]
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
pp = as_poly_1t(p, DE.t, z)
qa, qd, b = integrate_hyperexponential_polynomial(pp, DE, z)
i = pp.nth(0, 0)
ret = ((g1[0].as_expr()/g1[1].as_expr()).subs(s) \
+ residue_reduce_to_basic(g2, DE, z))
qas = qa.as_expr().subs(s)
qds = qd.as_expr().subs(s)
if conds == 'piecewise' and DE.x not in qds.free_symbols:
# We have to be careful if the exponent is S.Zero!
# XXX: Does qd = 0 always necessarily correspond to the exponential
# equaling 1?
ret += Piecewise(
(qas/qds, Ne(qds, 0)),
(integrate((p - i).subs(DE.t, 1).subs(s), DE.x), True)
)
else:
ret += qas/qds
if not b:
i = p - (qd*derivation(qa, DE) - qa*derivation(qd, DE)).as_expr()/\
(qd**2).as_expr()
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return (ret, i, b)
def integrate_hypertangent_polynomial(p, DE):
"""
Integration of hypertangent polynomials.
Explanation
===========
Given a differential field k such that sqrt(-1) is not in k, a
hypertangent monomial t over k, and p in k[t], return q in k[t] and
c in k such that p - Dq - c*D(t**2 + 1)/(t**1 + 1) is in k and p -
Dq does not have an elementary integral over k(t) if Dc != 0.
"""
# XXX: Make sure that sqrt(-1) is not in k.
q, r = polynomial_reduce(p, DE)
a = DE.d.exquo(Poly(DE.t**2 + 1, DE.t))
c = Poly(r.nth(1)/(2*a.as_expr()), DE.t)
return (q, c)
def integrate_nonlinear_no_specials(a, d, DE, z=None):
"""
Integration of nonlinear monomials with no specials.
Explanation
===========
Given a nonlinear monomial t over k such that Sirr ({p in k[t] | p is
special, monic, and irreducible}) is empty, and f in k(t), returns g
elementary over k(t) and a Boolean b in {True, False} such that f - Dg is
in k if b == True, or f - Dg does not have an elementary integral over k(t)
if b == False.
This function is applicable to all nonlinear extensions, but in the case
where it returns b == False, it will only have proven that the integral of
f - Dg is nonelementary if Sirr is empty.
This function returns a Basic expression.
"""
# TODO: Integral from k?
# TODO: split out nonelementary integral
# XXX: a and d must be canceled, or this might not return correct results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), b)
# Because f has no specials, this should be a polynomial in t, or else
# there is a bug.
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z).as_expr() + r[0].as_expr()/r[1].as_expr()).as_poly(DE.t)
q1, q2 = polynomial_reduce(p, DE)
if q2.expr.has(DE.t):
b = False
else:
b = True
ret = (cancel(g1[0].as_expr()/g1[1].as_expr() + q1.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
return (ret, b)
class NonElementaryIntegral(Integral):
"""
Represents a nonelementary Integral.
Explanation
===========
If the result of integrate() is an instance of this class, it is
guaranteed to be nonelementary. Note that integrate() by default will try
to find any closed-form solution, even in terms of special functions which
may themselves not be elementary. To make integrate() only give
elementary solutions, or, in the cases where it can prove the integral to
be nonelementary, instances of this class, use integrate(risch=True).
In this case, integrate() may raise NotImplementedError if it cannot make
such a determination.
integrate() uses the deterministic Risch algorithm to integrate elementary
functions or prove that they have no elementary integral. In some cases,
this algorithm can split an integral into an elementary and nonelementary
part, so that the result of integrate will be the sum of an elementary
expression and a NonElementaryIntegral.
Examples
========
>>> from sympy import integrate, exp, log, Integral
>>> from sympy.abc import x
>>> a = integrate(exp(-x**2), x, risch=True)
>>> print(a)
Integral(exp(-x**2), x)
>>> type(a)
<class 'sympy.integrals.risch.NonElementaryIntegral'>
>>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x))
>>> b = integrate(expr, x, risch=True)
>>> print(b)
-log(-x + log(x))/2 + log(x + log(x))/2 + Integral(1/log(x), x)
>>> type(b.atoms(Integral).pop())
<class 'sympy.integrals.risch.NonElementaryIntegral'>
"""
# TODO: This is useful in and of itself, because isinstance(result,
# NonElementaryIntegral) will tell if the integral has been proven to be
# elementary. But should we do more? Perhaps a no-op .doit() if
# elementary=True? Or maybe some information on why the integral is
# nonelementary.
pass
def risch_integrate(f, x, extension=None, handle_first='log',
separate_integral=False, rewrite_complex=None,
conds='piecewise'):
r"""
The Risch Integration Algorithm.
Explanation
===========
Only transcendental functions are supported. Currently, only exponentials
and logarithms are supported, but support for trigonometric functions is
forthcoming.
If this function returns an unevaluated Integral in the result, it means
that it has proven that integral to be nonelementary. Any errors will
result in raising NotImplementedError. The unevaluated Integral will be
an instance of NonElementaryIntegral, a subclass of Integral.
handle_first may be either 'exp' or 'log'. This changes the order in
which the extension is built, and may result in a different (but
equivalent) solution (for an example of this, see issue 5109). It is also
possible that the integral may be computed with one but not the other,
because not all cases have been implemented yet. It defaults to 'log' so
that the outer extension is exponential when possible, because more of the
exponential case has been implemented.
If ``separate_integral`` is ``True``, the result is returned as a tuple (ans, i),
where the integral is ans + i, ans is elementary, and i is either a
NonElementaryIntegral or 0. This useful if you want to try further
integrating the NonElementaryIntegral part using other algorithms to
possibly get a solution in terms of special functions. It is False by
default.
Examples
========
>>> from sympy.integrals.risch import risch_integrate
>>> from sympy import exp, log, pprint
>>> from sympy.abc import x
First, we try integrating exp(-x**2). Except for a constant factor of
2/sqrt(pi), this is the famous error function.
>>> pprint(risch_integrate(exp(-x**2), x))
/
|
| 2
| -x
| e dx
|
/
The unevaluated Integral in the result means that risch_integrate() has
proven that exp(-x**2) does not have an elementary anti-derivative.
In many cases, risch_integrate() can split out the elementary
anti-derivative part from the nonelementary anti-derivative part.
For example,
>>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 -
... x**2*log(x)), x))
/
|
log(-x + log(x)) log(x + log(x)) | 1
- ---------------- + --------------- + | ------ dx
2 2 | log(x)
|
/
This means that it has proven that the integral of 1/log(x) is
nonelementary. This function is also known as the logarithmic integral,
and is often denoted as Li(x).
risch_integrate() currently only accepts purely transcendental functions
with exponentials and logarithms, though note that this can include
nested exponentials and logarithms, as well as exponentials with bases
other than E.
>>> pprint(risch_integrate(exp(x)*exp(exp(x)), x))
/ x\
\e /
e
>>> pprint(risch_integrate(exp(exp(x)), x))
/
|
| / x\
| \e /
| e dx
|
/
>>> pprint(risch_integrate(x*x**x*log(x) + x**x + x*x**x, x))
x
x*x
>>> pprint(risch_integrate(x**x, x))
/
|
| x
| x dx
|
/
>>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x))
1
-----------
log(log(x))
"""
f = S(f)
DE = extension or DifferentialExtension(f, x, handle_first=handle_first,
dummy=True, rewrite_complex=rewrite_complex)
fa, fd = DE.fa, DE.fd
result = S.Zero
for case in reversed(DE.cases):
if not fa.expr.has(DE.t) and not fd.expr.has(DE.t) and not case == 'base':
DE.decrement_level()
fa, fd = frac_in((fa, fd), DE.t)
continue
fa, fd = fa.cancel(fd, include=True)
if case == 'exp':
ans, i, b = integrate_hyperexponential(fa, fd, DE, conds=conds)
elif case == 'primitive':
ans, i, b = integrate_primitive(fa, fd, DE)
elif case == 'base':
# XXX: We can't call ratint() directly here because it doesn't
# handle polynomials correctly.
ans = integrate(fa.as_expr()/fd.as_expr(), DE.x, risch=False)
b = False
i = S.Zero
else:
raise NotImplementedError("Only exponential and logarithmic "
"extensions are currently supported.")
result += ans
if b:
DE.decrement_level()
fa, fd = frac_in(i, DE.t)
else:
result = result.subs(DE.backsubs)
if not i.is_zero:
i = NonElementaryIntegral(i.function.subs(DE.backsubs),i.limits)
if not separate_integral:
result += i
return result
else:
if isinstance(i, NonElementaryIntegral):
return (result, i)
else:
return (result, 0)
|