File size: 13,430 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.relational import Eq, Ne
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, tan)
from sympy.functions.special.bessel import (besselj, besselk, bessely, jn)
from sympy.functions.special.error_functions import erf
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import And
from sympy.matrices import Matrix
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import simplify
from sympy.integrals.heurisch import components, heurisch, heurisch_wrapper
from sympy.testing.pytest import XFAIL, slow
from sympy.integrals.integrals import integrate
x, y, z, nu = symbols('x,y,z,nu')
f = Function('f')


def test_components():
    assert components(x*y, x) == {x}
    assert components(1/(x + y), x) == {x}
    assert components(sin(x), x) == {sin(x), x}
    assert components(sin(x)*sqrt(log(x)), x) == \
        {log(x), sin(x), sqrt(log(x)), x}
    assert components(x*sin(exp(x)*y), x) == \
        {sin(y*exp(x)), x, exp(x)}
    assert components(x**Rational(17, 54)/sqrt(sin(x)), x) == \
        {sin(x), x**Rational(1, 54), sqrt(sin(x)), x}

    assert components(f(x), x) == \
        {x, f(x)}
    assert components(Derivative(f(x), x), x) == \
        {x, f(x), Derivative(f(x), x)}
    assert components(f(x)*diff(f(x), x), x) == \
        {x, f(x), Derivative(f(x), x), Derivative(f(x), x)}


def test_issue_10680():
    assert isinstance(integrate(x**log(x**log(x**log(x))),x), Integral)


def test_issue_21166():
    assert integrate(sin(x/sqrt(abs(x))), (x, -1, 1)) == 0


def test_heurisch_polynomials():
    assert heurisch(1, x) == x
    assert heurisch(x, x) == x**2/2
    assert heurisch(x**17, x) == x**18/18
    # For coverage
    assert heurisch_wrapper(y, x) == y*x


def test_heurisch_fractions():
    assert heurisch(1/x, x) == log(x)
    assert heurisch(1/(2 + x), x) == log(x + 2)
    assert heurisch(1/(x + sin(y)), x) == log(x + sin(y))

    # Up to a constant, where C = pi*I*Rational(5, 12), Mathematica gives identical
    # result in the first case. The difference is because SymPy changes
    # signs of expressions without any care.
    # XXX ^ ^ ^ is this still correct?
    assert heurisch(5*x**5/(
        2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12]
    assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12

    assert heurisch(1/x**2, x) == -1/x
    assert heurisch(-1/x**5, x) == 1/(4*x**4)


def test_heurisch_log():
    assert heurisch(log(x), x) == x*log(x) - x
    assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x)
    assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x]


def test_heurisch_exp():
    assert heurisch(exp(x), x) == exp(x)
    assert heurisch(exp(-x), x) == -exp(-x)
    assert heurisch(exp(17*x), x) == exp(17*x) / 17
    assert heurisch(x*exp(x), x) == x*exp(x) - exp(x)
    assert heurisch(x*exp(x**2), x) == exp(x**2) / 2

    assert heurisch(exp(-x**2), x) is None

    assert heurisch(2**x, x) == 2**x/log(2)
    assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2)

    assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1)
    assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x)

    # https://github.com/sympy/sympy/issues/23707
    anti = -exp(z)/(sqrt(x - y)*exp(z*sqrt(x - y)) - exp(z*sqrt(x - y)))
    assert heurisch(exp(z)*exp(-z*sqrt(x - y)), z) == anti


def test_heurisch_trigonometric():
    assert heurisch(sin(x), x) == -cos(x)
    assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)

    assert heurisch(cos(x), x) == sin(x)
    assert heurisch(tan(x), x) in [
        log(1 + tan(x)**2)/2,
        log(tan(x) + I) + I*x,
        log(tan(x) - I) - I*x,
    ]

    assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
    assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)

    # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
    assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
    assert heurisch(cos(x)/sin(x), x) == log(sin(x))

    assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
    assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
                    2*sin(x) + 2*x*cos(x))

    assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
        + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)

    assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723
    assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3
    assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x)
        - 1) - atan(sqrt(2)*sin(x) + 1)

    assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2))


def test_heurisch_hyperbolic():
    assert heurisch(sinh(x), x) == cosh(x)
    assert heurisch(cosh(x), x) == sinh(x)

    assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x)
    assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x)

    assert heurisch(
        x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4


def test_heurisch_mixed():
    assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2
    assert heurisch(sin(x/sqrt(-x)), x) == 2*x*cos(x/sqrt(-x))/sqrt(-x) - 2*sin(x/sqrt(-x))


def test_heurisch_radicals():
    assert heurisch(1/sqrt(x), x) == 2*sqrt(x)
    assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x)
    assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5

    assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3
    y = Symbol('y')
    assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
        2*sqrt(x)*cos(y*sqrt(x))/y
    assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise(
        (-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, Ne(y, 0)),
        (0, True))
    y = Symbol('y', positive=True)
    assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
        2*sqrt(x)*cos(y*sqrt(x))/y


def test_heurisch_special():
    assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi)
    assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4


def test_heurisch_symbolic_coeffs():
    assert heurisch(1/(x + y), x) == log(x + y)
    assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2))
    assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)


def test_heurisch_symbolic_coeffs_1130():
    y = Symbol('y')
    assert heurisch_wrapper(1/(x**2 + y), x) == Piecewise(
    (log(x - sqrt(-y))/(2*sqrt(-y)) - log(x + sqrt(-y))/(2*sqrt(-y)),
    Ne(y, 0)), (-1/x, True))
    y = Symbol('y', positive=True)
    assert heurisch_wrapper(1/(x**2 + y), x) == (atan(x/sqrt(y))/sqrt(y))


def test_heurisch_hacking():
    assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
        x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
    assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
        x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14

    assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
        sqrt(7)*asinh(sqrt(7)*x)/7
    assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
        sqrt(7)*asin(sqrt(7)*x)/7

    assert heurisch(exp(-7*x**2), x, hints=[]) == \
        sqrt(7*pi)*erf(sqrt(7)*x)/14

    assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
        asin(x*Rational(2, 3))/2

    assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
        asinh(x*Rational(2, 3))/2

    assert heurisch(1/sqrt(3*x**2-4), x, hints=[]) == \
           sqrt(3)*log(3*x + sqrt(3)*sqrt(3*x**2 - 4))/3


def test_heurisch_function():
    assert heurisch(f(x), x) is None

@XFAIL
def test_heurisch_function_derivative():
    # TODO: it looks like this used to work just by coincindence and
    # thanks to sloppy implementation. Investigate why this used to
    # work at all and if support for this can be restored.

    df = diff(f(x), x)

    assert heurisch(f(x)*df, x) == f(x)**2/2
    assert heurisch(f(x)**2*df, x) == f(x)**3/3
    assert heurisch(df/f(x), x) == log(f(x))


def test_heurisch_wrapper():
    f = 1/(y + x)
    assert heurisch_wrapper(f, x) == log(x + y)
    f = 1/(y - x)
    assert heurisch_wrapper(f, x) == -log(x - y)
    f = 1/((y - x)*(y + x))
    assert heurisch_wrapper(f, x) == Piecewise(
        (-log(x - y)/(2*y) + log(x + y)/(2*y), Ne(y, 0)), (1/x, True))
    # issue 6926
    f = sqrt(x**2/((y - x)*(y + x)))
    assert heurisch_wrapper(f, x) == x*sqrt(-x**2/(x**2 - y**2)) \
    - y**2*sqrt(-x**2/(x**2 - y**2))/x


def test_issue_3609():
    assert heurisch(1/(x * (1 + log(x)**2)), x) == atan(log(x))

### These are examples from the Poor Man's Integrator
### http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples/


def test_pmint_rat():
    # TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
    # would give the optimal result?

    def drop_const(expr, x):
        if expr.is_Add:
            return Add(*[ arg for arg in expr.args if arg.has(x) ])
        else:
            return expr

    f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
    g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)

    assert drop_const(ratsimp(heurisch(f, x)), x) == g


def test_pmint_trig():
    f = (x - tan(x)) / tan(x)**2 + tan(x)
    g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2

    assert heurisch(f, x) == g


def test_pmint_logexp():
    f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
    g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))

    assert ratsimp(heurisch(f, x)) == g


def test_pmint_erf():
    f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1)
    g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4)

    assert ratsimp(heurisch(f, x)) == g


def test_pmint_LambertW():
    f = LambertW(x)
    g = x*LambertW(x) - x + x/LambertW(x)

    assert heurisch(f, x) == g


def test_pmint_besselj():
    f = besselj(nu + 1, x)/besselj(nu, x)
    g = nu*log(x) - log(besselj(nu, x))

    assert heurisch(f, x) == g

    f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x
    g = besselj(nu, x)

    assert heurisch(f, x) == g

    f = jn(nu + 1, x)/jn(nu, x)
    g = nu*log(x) - log(jn(nu, x))

    assert heurisch(f, x) == g


@slow
def test_pmint_bessel_products():
    f = x*besselj(nu, x)*bessely(nu, 2*x)
    g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3

    assert heurisch(f, x) == g

    f = x*besselj(nu, x)*besselk(nu, 2*x)
    g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5

    assert heurisch(f, x) == g


def test_pmint_WrightOmega():
    def omega(x):
        return LambertW(exp(x))

    f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x))
    g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x)))

    assert heurisch(f, x) == g


def test_RR():
    # Make sure the algorithm does the right thing if the ring is RR. See
    # issue 8685.
    assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \
        0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x)

# TODO: convert the rest of PMINT tests:
# Airy functions
# f = (x - AiryAi(x)*AiryAi(1, x)) / (x**2 - AiryAi(x)**2)
# g = Rational(1,2)*ln(x + AiryAi(x)) + Rational(1,2)*ln(x - AiryAi(x))
# f = x**2 * AiryAi(x)
# g = -AiryAi(x) + AiryAi(1, x)*x
# Whittaker functions
# f = WhittakerW(mu + 1, nu, x) / (WhittakerW(mu, nu, x) * x)
# g = x/2 - mu*ln(x) - ln(WhittakerW(mu, nu, x))


def test_issue_22527():
    t, R = symbols(r't R')
    z = Function('z')(t)
    def f(x):
      return x/sqrt(R**2 - x**2)
    Uz = integrate(f(z), z)
    Ut = integrate(f(t), t)
    assert Ut == Uz.subs(z, t)


def test_heurisch_complex_erf_issue_26338():
    r = symbols('r', real=True)
    a = exp(-r**2/(2*(2 - I)**2))
    assert heurisch(a, r, hints=[]) is None  # None, not a wrong soln
    a = sqrt(pi)*erf((1 + I)/2)/2
    assert integrate(exp(-I*r**2/2), (r, 0, 1)) == a - I*a

    a = exp(-x**2/(2*(2 - I)**2))
    assert heurisch(a, x, hints=[]) is None  # None, not a wrong soln
    a = sqrt(pi)*erf((1 + I)/2)/2
    assert integrate(exp(-I*x**2/2), (x, 0, 1)) == a - I*a


def test_issue_15498():
    Z0 = Function('Z0')
    k01, k10, t, s= symbols('k01 k10 t s', real=True, positive=True)
    m = Matrix([[exp(-k10*t)]])
    _83 = Rational(83, 100)  # 0.83 works, too
    [a, b, c, d, e, f, g] = [100, 0.5, _83, 50, 0.6, 2, 120]
    AIF_btf = a*(d*e*(1 - exp(-(t - b)/e)) + f*g*(1 - exp(-(t - b)/g)))
    AIF_atf = a*(d*e*exp(-(t - b)/e)*(exp((c - b)/e) - 1
        ) + f*g*exp(-(t - b)/g)*(exp((c - b)/g) - 1))
    AIF_sym = Piecewise((0, t < b), (AIF_btf, And(b <= t, t < c)), (AIF_atf, c <= t))
    aif_eq = Eq(Z0(t), AIF_sym)
    f_vec = Matrix([[k01*Z0(t)]])
    integrand = m*m.subs(t, s)**-1*f_vec.subs(aif_eq.lhs, aif_eq.rhs).subs(t, s)
    solution = integrate(integrand[0], (s, 0, t))
    assert solution is not None  # does not hang and takes less than 10 s