File size: 32,594 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
from sympy.core.function import expand_func
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.functions.elementary.complexes import Abs, arg, re, unpolarify
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import cosh, acosh, sinh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
from sympy.functions.elementary.trigonometric import (cos, sin, sinc, asin)
from sympy.functions.special.error_functions import (erf, erfc)
from sympy.functions.special.gamma_functions import (gamma, polygamma)
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.integrals.integrals import (Integral, integrate)
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.simplify import simplify
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
    meijerint_indefinite, _inflate_g, _create_lookup_table,
    meijerint_definite, meijerint_inversion)
from sympy.testing.pytest import slow
from sympy.core.random import (verify_numerically,
        random_complex_number as randcplx)
from sympy.abc import x, y, a, b, c, d, s, t, z


def test_rewrite_single():
    def t(expr, c, m):
        e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
        assert e is not None
        assert isinstance(e[0][0][2], meijerg)
        assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

    def tn(expr):
        assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None

    t(x, 1, x)
    t(x**2, 1, x**2)
    t(x**2 + y*x**2, y + 1, x**2)
    tn(x**2 + x)
    tn(x**y)

    def u(expr, x):
        from sympy.core.add import Add
        r = _rewrite_single(expr, x)
        e = Add(*[res[0]*res[2] for res in r[0]]).replace(
            exp_polar, exp)  # XXX Hack?
        assert verify_numerically(e, expr, x)

    u(exp(-x)*sin(x), x)

    # The following has stopped working because hyperexpand changed slightly.
    # It is probably not worth fixing
    #u(exp(-x)*sin(x)*cos(x), x)

    # This one cannot be done numerically, since it comes out as a g-function
    # of argument 4*pi
    # NOTE This also tests a bug in inverse mellin transform (which used to
    #      turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
    #      exp_polar).
    #u(exp(x)*sin(x), x)
    assert _rewrite_single(exp(x)*sin(x), x) == \
        ([(-sqrt(2)/(2*sqrt(pi)), 0,
           meijerg(((Rational(-1, 2), 0, Rational(1, 4), S.Half, Rational(3, 4)), (1,)),
                   ((), (Rational(-1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True)


def test_rewrite1():
    assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \
        (5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True)


def test_meijerint_indefinite_numerically():
    def t(fac, arg):
        g = meijerg([a], [b], [c], [d], arg)*fac
        subs = {a: randcplx()/10, b: randcplx()/10 + I,
                c: randcplx(), d: randcplx()}
        integral = meijerint_indefinite(g, x)
        assert integral is not None
        assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
    t(1, x)
    t(2, x)
    t(1, 2*x)
    t(1, x**2)
    t(5, x**S('3/2'))
    t(x**3, x)
    t(3*x**S('3/2'), 4*x**S('7/3'))


def test_meijerint_definite():
    v, b = meijerint_definite(x, x, 0, 0)
    assert v.is_zero and b is True
    v, b = meijerint_definite(x, x, oo, oo)
    assert v.is_zero and b is True


def test_inflate():
    subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(),
            d: randcplx(), y: randcplx()/10}

    def t(a, b, arg, n):
        from sympy.core.mul import Mul
        m1 = meijerg(a, b, arg)
        m2 = Mul(*_inflate_g(m1, n))
        # NOTE: (the random number)**9 must still be on the principal sheet.
        # Thus make b&d small to create random numbers of small imaginary part.
        return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1)
    assert t([[a], [b]], [[c], [d]], x, 3)
    assert t([[a, y], [b]], [[c], [d]], x, 3)
    assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3)


def test_recursive():
    from sympy.core.symbol import symbols
    a, b, c = symbols('a b c', positive=True)
    r = exp(-(x - a)**2)*exp(-(x - b)**2)
    e = integrate(r, (x, 0, oo), meijerg=True)
    assert simplify(e.expand()) == (
        sqrt(2)*sqrt(pi)*(
        (erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4)
    e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True)
    assert simplify(e) == (
        sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2
        + (2*a + 2*b + c)**2/8)/4)
    assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 + erf(a + b + c))
    assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 - erf(a + b + c))


@slow
def test_meijerint():
    from sympy.core.function import expand
    from sympy.core.symbol import symbols
    s, t, mu = symbols('s t mu', real=True)
    assert integrate(meijerg([], [], [0], [], s*t)
                     *meijerg([], [], [mu/2], [-mu/2], t**2/4),
                     (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x),
                                (x, 0, oo), meijerg=False),
                      Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    assert meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi)*sigma*(2 - erfc(mu/(2*sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1/(mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2),
                              x, -oo, oo) == (1, True)
    assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (S.Half, True)

    # Test a bug
    def res(n):
        return (1/(1 + x**2)).diff(x, n).subs(x, 1)*(-1)**n
    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True)
                    ) == sqrt(2)*sin(a + pi/4)/2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                  *meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo
        ) == (
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         /(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
           *gamma(a/2 + b/2 - s + 1)),
            (re(s) < 1) & (re(s) < S(1)/2) & (re(a)/2 + re(b)/2 + re(s) > 0)))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, S.Half)/4).expand()

    # Test hyperexpand bug.
    from sympy.functions.special.gamma_functions import lowergamma
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half,
        alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2


def test_bessel():
    from sympy.functions.special.bessel import (besseli, besselj)
    assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo),
                     meijerg=True, conds='none')) == \
        2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b))
    assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo),
                     meijerg=True, conds='none')) == 1/(2*a)

    # TODO more orthogonality integrals

    assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + S.Half)),
                              (x, 1, oo), meijerg=True, conds='none')
                    *2/((z/2)**y*sqrt(pi)*gamma(S.Half - y))) == \
        besselj(y, z)

    # Werner Rosenheinrich
    # SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

    assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x)
    assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x)
    # TODO can do higher powers, but come out as high order ... should they be
    #      reduced to order 0, 1?
    assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x)
    assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \
        -(besselj(0, x)**2 + besselj(1, x)**2)/2
    # TODO more besseli when tables are extended or recursive mellin works
    assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \
        -2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \
        + 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x
    assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        -besselj(0, x)**2/2
    assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        x**2*besselj(1, x)**2/2
    assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \
        (x*besselj(0, x)**2 + x*besselj(1, x)**2 -
            besselj(0, x)*besselj(1, x))
    # TODO how does besselj(0, a*x)*besselj(0, b*x) work?
    # TODO how does besselj(0, x)**2*besselj(1, x)**2 work?
    # TODO sin(x)*besselj(0, x) etc come out a mess
    # TODO can x*log(x)*besselj(0, x) be done?
    # TODO how does besselj(1, x)*besselj(0, x+a) work?
    # TODO more indefinite integrals when struve functions etc are implemented

    # test a substitution
    assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \
        -besselj(0, x**2)/2


def test_inversion():
    from sympy.functions.special.bessel import besselj
    from sympy.functions.special.delta_functions import Heaviside

    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)

    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None


def test_inversion_conditional_output():
    from sympy.core.symbol import Symbol
    from sympy.integrals.transforms import InverseLaplaceTransform

    a = Symbol('a', positive=True)
    F = sqrt(pi/a)*exp(-2*sqrt(a)*sqrt(s))
    f = meijerint_inversion(F, s, t)
    assert not f.is_Piecewise

    b = Symbol('b', real=True)
    F = F.subs(a, b)
    f2 = meijerint_inversion(F, s, t)
    assert f2.is_Piecewise
    # first piece is same as f
    assert f2.args[0][0] == f.subs(a, b)
    # last piece is an unevaluated transform
    assert f2.args[-1][1]
    ILT = InverseLaplaceTransform(F, s, t, None)
    assert f2.args[-1][0] == ILT or f2.args[-1][0] == ILT.as_integral


def test_inversion_exp_real_nonreal_shift():
    from sympy.core.symbol import Symbol
    from sympy.functions.special.delta_functions import DiracDelta
    r = Symbol('r', real=True)
    c = Symbol('c', extended_real=False)
    a = 1 + 2*I
    z = Symbol('z')
    assert not meijerint_inversion(exp(r*s), s, t).is_Piecewise
    assert meijerint_inversion(exp(a*s), s, t) is None
    assert meijerint_inversion(exp(c*s), s, t) is None
    f = meijerint_inversion(exp(z*s), s, t)
    assert f.is_Piecewise
    assert isinstance(f.args[0][0], DiracDelta)


@slow
def test_lookup_table():
    from sympy.core.random import uniform, randrange
    from sympy.core.add import Add
    from sympy.integrals.meijerint import z as z_dummy
    table = {}
    _create_lookup_table(table)
    for l in table.values():
        for formula, terms, cond, hint in sorted(l, key=default_sort_key):
            subs = {}
            for ai in list(formula.free_symbols) + [z_dummy]:
                if hasattr(ai, 'properties') and ai.properties:
                    # these Wilds match positive integers
                    subs[ai] = randrange(1, 10)
                else:
                    subs[ai] = uniform(1.5, 2.0)
            if not isinstance(terms, list):
                terms = terms(subs)

            # First test that hyperexpand can do this.
            expanded = [hyperexpand(g) for (_, g) in terms]
            assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded)

            # Now test that the meijer g-function is indeed as advertised.
            expanded = Add(*[f*x for (f, x) in terms])
            a, b = formula.n(subs=subs), expanded.n(subs=subs)
            r = min(abs(a), abs(b))
            if r < 1:
                assert abs(a - b).n() <= 1e-10
            else:
                assert (abs(a - b)/r).n() <= 1e-10


def test_branch_bug():
    from sympy.functions.special.gamma_functions import lowergamma
    from sympy.simplify.powsimp import powdenest
    # TODO gammasimp cannot prove that the factor is unity
    assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x),
           polar=True) == 2*erf(x**3)*gamma(Rational(2, 3))/3/gamma(Rational(5, 3))
    assert integrate(erf(x**3), x, meijerg=True) == \
        2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \
        - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3)))


def test_linear_subs():
    from sympy.functions.special.bessel import besselj
    assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
    assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)


@slow
def test_probability():
    # various integrals from probability theory
    from sympy.core.function import expand_mul
    from sympy.core.symbol import (Symbol, symbols)
    from sympy.simplify.gammasimp import gammasimp
    from sympy.simplify.powsimp import powsimp
    mu1, mu2 = symbols('mu1 mu2', nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2', positive=True)
    rate = Symbol('lambda', positive=True)

    def normal(x, mu, sigma):
        return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)

    def exponential(x, rate):
        return rate*exp(-rate*x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
    assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
    assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2
    assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo), meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo), meijerg=True)
        res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                        (y, -oo, oo), (x, 0, oo), meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x*y) == mu1/rate
    assert E(x*y**2) == mu1**2/rate + sigma1**2/rate
    ans = sigma1**2 + 1/rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        /gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (gammasimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta)
    j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (beta > 2)
    assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        /(beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert gammasimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo),
                    meijerg=True)) == 2*sqrt(2)/sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x*dagum
    assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/(
                    (a*p + 1)*gamma(p))
    assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/(
                    (a*p + 2)*gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2/(d2 - 2)
    assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda/2/pi)*x**(Rational(-3, 2))*exp(-lamda*(x - mu)**2/x/2/mu**2)
    mysimp = lambda expr: simplify(expr.rewrite(exp))
    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x*dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda
    assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**S('3/2'),
                    (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    alpha, beta = symbols('alpha beta', positive=True)
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \
        (1 + x**beta/alpha**beta)**2
    # FIXME: If alpha, beta are not declared as finite the line below hangs
    # after the changes in:
    #    https://github.com/sympy/sympy/pull/16603
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True)
    n = Symbol('n', positive=True)
    distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    from sympy.functions.special.bessel import besseli
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu)/b)/2/b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert gammasimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k),
                              (x, 0, oo)))) == polygamma(0, k)


@slow
def test_expint():
    """ Test various exponential integrals. """
    from sympy.core.symbol import Symbol
    from sympy.functions.elementary.hyperbolic import sinh
    from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
    assert simplify(unpolarify(integrate(exp(-z*x)/x**y, (x, 1, oo),
                meijerg=True, conds='none'
                ).rewrite(expint).expand(func=True))) == expint(y, z)

    assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(1, z)
    assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(2, z).rewrite(Ei).rewrite(expint)
    assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(3, z).rewrite(Ei).rewrite(expint).expand()

    t = Symbol('t', positive=True)
    assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t)
    assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \
        Si(t) - pi/2
    assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z)
    assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z)
    assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \
        I*pi - expint(1, x)
    assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \
        == expint(1, x) - exp(-x)/x - I*pi

    u = Symbol('u', polar=True)
    assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Ci(u)
    assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Chi(u)

    assert integrate(expint(1, x), x, meijerg=True
            ).rewrite(expint).expand() == x*expint(1, x) - exp(-x)
    assert integrate(expint(2, x), x, meijerg=True
            ).rewrite(expint).expand() == \
        -x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2
    assert simplify(unpolarify(integrate(expint(y, x), x,
                 meijerg=True).rewrite(expint).expand(func=True))) == \
        -expint(y + 1, x)

    assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x)
    assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u)
    assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x)
    assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u)

    assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4
    assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2


def test_messy():
    from sympy.functions.elementary.hyperbolic import (acosh, acoth)
    from sympy.functions.elementary.trigonometric import (asin, atan)
    from sympy.functions.special.bessel import besselj
    from sympy.functions.special.error_functions import (Chi, E1, Shi, Si)
    from sympy.integrals.transforms import (fourier_transform, laplace_transform)
    assert (laplace_transform(Si(x), x, s, simplify=True) ==
            ((-atan(s) + pi/2)/s, 0, True))

    assert laplace_transform(Shi(x), x, s, simplify=True) == (
        acoth(s)/s, -oo, s**2 > 1)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s, simplify=True) == (
        (log(s**(-2)) - log(1 - 1/s**2))/(2*s), -oo, s**2 > 1)

    # TODO maybe simplify the inequalities? when the simplification
    # allows for generators instead of symbols this will work
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, (re(a) > -2) & (re(a) > -1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    ans = fourier_transform(besselj(1, x)/x, x, s, noconds=False)
    assert (ans[0].factor(deep=True).expand(), ans[1]) == \
        (Piecewise((0, (s > 1/(2*pi)) | (s < -1/(2*pi))),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(S.Half + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True))


def test_issue_6122():
    assert integrate(exp(-I*x**2), (x, -oo, oo), meijerg=True) == \
        -I*sqrt(pi)*exp(I*pi/4)


def test_issue_6252():
    expr = 1/x/(a + b*x)**Rational(1, 3)
    anti = integrate(expr, x, meijerg=True)
    assert not anti.has(hyper)
    # XXX the expression is a mess, but actually upon differentiation and
    # putting in numerical values seems to work...


def test_issue_6348():
    assert integrate(exp(I*x)/(1 + x**2), (x, -oo, oo)).simplify().rewrite(exp) \
        == pi*exp(-1)


def test_fresnel():
    from sympy.functions.special.error_functions import (fresnelc, fresnels)

    assert expand_func(integrate(sin(pi*x**2/2), x)) == fresnels(x)
    assert expand_func(integrate(cos(pi*x**2/2), x)) == fresnelc(x)


def test_issue_6860():
    assert meijerint_indefinite(x**x**x, x) is None


def test_issue_7337():
    f = meijerint_indefinite(x*sqrt(2*x + 3), x).together()
    assert f == sqrt(2*x + 3)*(2*x**2 + x - 3)/5
    assert f._eval_interval(x, S.NegativeOne, S.One) == Rational(2, 5)


def test_issue_8368():
    assert meijerint_indefinite(cosh(x)*exp(-x*t), x) == (
        (-t - 1)*exp(x) + (-t + 1)*exp(-x))*exp(-t*x)/2/(t**2 - 1)


def test_issue_10211():
    from sympy.abc import h, w
    assert integrate((1/sqrt((y-x)**2 + h**2)**3), (x,0,w), (y,0,w)) == \
        2*sqrt(1 + w**2/h**2)/h - 2/h


def test_issue_11806():
    from sympy.core.symbol import symbols
    y, L = symbols('y L', positive=True)
    assert integrate(1/sqrt(x**2 + y**2)**3, (x, -L, L)) == \
        2*L/(y**2*sqrt(L**2 + y**2))

def test_issue_10681():
    from sympy.polys.domains.realfield import RR
    from sympy.abc import R, r
    f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True)
    g = (1.0/3)*R**1.0*r**3*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),),
                                  r**2*exp_polar(2*I*pi)/R**2)
    assert RR.almosteq((f/g).n(), 1.0, 1e-12)

def test_issue_13536():
    from sympy.core.symbol import Symbol
    a = Symbol('a', positive=True)
    assert integrate(1/x**2, (x, oo, a)) == -1/a


def test_issue_6462():
    from sympy.core.symbol import Symbol
    x = Symbol('x')
    n = Symbol('n')
    # Not the actual issue, still wrong answer for n = 1, but that there is no
    # exception
    assert integrate(cos(x**n)/x**n, x, meijerg=True).subs(n, 2).equals(
            integrate(cos(x**2)/x**2, x, meijerg=True))


def test_indefinite_1_bug():
    assert integrate((b + t)**(-a), t, meijerg=True) == -b*(1 + t/b)**(1 - a)/(a*b**a - b**a)


def test_pr_23583():
    # This result is wrong. Check whether new result is correct when this test fail.
    assert integrate(1/sqrt((x - I)**2-1), meijerg=True) == \
           Piecewise((acosh(x - I), Abs((x - I)**2) > 1), (-I*asin(x - I), True))


# 25786
def test_integrate_function_of_square_over_negatives():
    assert integrate(exp(-x**2), (x,-5,0), meijerg=True) == sqrt(pi)/2 * erf(5)


def test_issue_25949():
    from sympy.core.symbol import symbols
    y = symbols("y", nonzero=True)
    assert integrate(cosh(y*(x + 1)), (x, -1, -0.25), meijerg=True) == sinh(0.75*y)/y