File size: 15,318 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""For more tests on satisfiability, see test_dimacs"""

from sympy.assumptions.ask import Q
from sympy.core.symbol import symbols
from sympy.core.relational import Unequality
from sympy.logic.boolalg import And, Or, Implies, Equivalent, true, false
from sympy.logic.inference import literal_symbol, \
     pl_true, satisfiable, valid, entails, PropKB
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \
    find_pure_symbol, find_unit_clause, unit_propagate, \
    find_pure_symbol_int_repr, find_unit_clause_int_repr, \
    unit_propagate_int_repr
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable

from sympy.logic.algorithms.z3_wrapper import z3_satisfiable
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.logic.tests.test_lra_theory import make_random_problem
from sympy.core.random import randint

from sympy.testing.pytest import raises, skip
from sympy.external import import_module


def test_literal():
    A, B = symbols('A,B')
    assert literal_symbol(True) is True
    assert literal_symbol(False) is False
    assert literal_symbol(A) is A
    assert literal_symbol(~A) is A


def test_find_pure_symbol():
    A, B, C = symbols('A,B,C')
    assert find_pure_symbol([A], [A]) == (A, True)
    assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None)
    assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True)
    assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True)
    assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False)
    assert find_pure_symbol(
        [A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None)


def test_find_pure_symbol_int_repr():
    assert find_pure_symbol_int_repr([1], [{1}]) == (1, True)
    assert find_pure_symbol_int_repr([1, 2],
                [{-1, 2}, {-2, 1}]) == (None, None)
    assert find_pure_symbol_int_repr([1, 2, 3],
                [{1, -2}, {-2, -3}, {3, 1}]) == (1, True)
    assert find_pure_symbol_int_repr([1, 2, 3],
                [{-1, 2}, {2, -3}, {3, 1}]) == (2, True)
    assert find_pure_symbol_int_repr([1, 2, 3],
                [{-1, -2}, {-2, -3}, {3, 1}]) == (2, False)
    assert find_pure_symbol_int_repr([1, 2, 3],
                [{-1, 2}, {-2, -3}, {3, 1}]) == (None, None)


def test_unit_clause():
    A, B, C = symbols('A,B,C')
    assert find_unit_clause([A], {}) == (A, True)
    assert find_unit_clause([A, ~A], {}) == (A, True)  # Wrong ??
    assert find_unit_clause([A | B], {A: True}) == (B, True)
    assert find_unit_clause([A | B], {B: True}) == (A, True)
    assert find_unit_clause(
        [A | B | C, B | ~C, A | ~B], {A: True}) == (B, False)
    assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True)
    assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)


def test_unit_clause_int_repr():
    assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True)
    assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True)
    assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True)
    assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True)
    assert find_unit_clause_int_repr(map(set,
        [[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False)
    assert find_unit_clause_int_repr(map(set,
        [[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True)

    A, B, C = symbols('A,B,C')
    assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)


def test_unit_propagate():
    A, B, C = symbols('A,B,C')
    assert unit_propagate([A | B], A) == []
    assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A]


def test_unit_propagate_int_repr():
    assert unit_propagate_int_repr([{1, 2}], 1) == []
    assert unit_propagate_int_repr(map(set,
        [[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}]


def test_dpll():
    """This is also tested in test_dimacs"""
    A, B, C = symbols('A,B,C')
    assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True}


def test_dpll_satisfiable():
    A, B, C = symbols('A,B,C')
    assert dpll_satisfiable( A & ~A ) is False
    assert dpll_satisfiable( A & ~B ) == {A: True, B: False}
    assert dpll_satisfiable(
        A | B ) in ({A: True}, {B: True}, {A: True, B: True})
    assert dpll_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False},
            {A: True, C: True}, {B: True, C: True})
    assert dpll_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True}
    assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}


def test_dpll2_satisfiable():
    A, B, C = symbols('A,B,C')
    assert dpll2_satisfiable( A & ~A ) is False
    assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
    assert dpll2_satisfiable(
        A | B ) in ({A: True}, {B: True}, {A: True, B: True})
    assert dpll2_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
        {A: True, B: True, C: True})
    assert dpll2_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
        {B: True, A: True})
    assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}


def test_minisat22_satisfiable():
    A, B, C = symbols('A,B,C')
    minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22")
    assert minisat22_satisfiable( A & ~A ) is False
    assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
    assert minisat22_satisfiable(
        A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
    assert minisat22_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
        {A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
    assert minisat22_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
        {B: True, A: True})
    assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}

def test_minisat22_minimal_satisfiable():
    A, B, C = symbols('A,B,C')
    minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True)
    assert minisat22_satisfiable( A & ~A ) is False
    assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
    assert minisat22_satisfiable(
        A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
    assert minisat22_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
        {A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
    assert minisat22_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
        {B: True, A: True})
    assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
    g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True)
    sol = next(g)
    first_solution = {key for key, value in sol.items() if value}
    sol=next(g)
    second_solution = {key for key, value in sol.items() if value}
    sol=next(g)
    third_solution = {key for key, value in sol.items() if value}
    assert not first_solution <= second_solution
    assert not second_solution <= third_solution
    assert not first_solution <= third_solution

def test_satisfiable():
    A, B, C = symbols('A,B,C')
    assert satisfiable(A & (A >> B) & ~B) is False


def test_valid():
    A, B, C = symbols('A,B,C')
    assert valid(A >> (B >> A)) is True
    assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True
    assert valid((~B >> ~A) >> (A >> B)) is True
    assert valid(A | B | C) is False
    assert valid(A >> B) is False


def test_pl_true():
    A, B, C = symbols('A,B,C')
    assert pl_true(True) is True
    assert pl_true( A & B, {A: True, B: True}) is True
    assert pl_true( A | B, {A: True}) is True
    assert pl_true( A | B, {B: True}) is True
    assert pl_true( A | B, {A: None, B: True}) is True
    assert pl_true( A >> B, {A: False}) is True
    assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
    assert pl_true(Equivalent(A, B), {A: False, B: False}) is True

    # test for false
    assert pl_true(False) is False
    assert pl_true( A & B, {A: False, B: False}) is False
    assert pl_true( A & B, {A: False}) is False
    assert pl_true( A & B, {B: False}) is False
    assert pl_true( A | B, {A: False, B: False}) is False

    #test for None
    assert pl_true(B, {B: None}) is None
    assert pl_true( A & B, {A: True, B: None}) is None
    assert pl_true( A >> B, {A: True, B: None}) is None
    assert pl_true(Equivalent(A, B), {A: None}) is None
    assert pl_true(Equivalent(A, B), {A: True, B: None}) is None

    # Test for deep
    assert pl_true(A | B, {A: False}, deep=True) is None
    assert pl_true(~A & ~B, {A: False}, deep=True) is None
    assert pl_true(A | B, {A: False, B: False}, deep=True) is False
    assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
    assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True


def test_pl_true_wrong_input():
    from sympy.core.numbers import pi
    raises(ValueError, lambda: pl_true('John Cleese'))
    raises(ValueError, lambda: pl_true(42 + pi + pi ** 2))
    raises(ValueError, lambda: pl_true(42))


def test_entails():
    A, B, C = symbols('A, B, C')
    assert entails(A, [A >> B, ~B]) is False
    assert entails(B, [Equivalent(A, B), A]) is True
    assert entails((A >> B) >> (~A >> ~B)) is False
    assert entails((A >> B) >> (~B >> ~A)) is True


def test_PropKB():
    A, B, C = symbols('A,B,C')
    kb = PropKB()
    assert kb.ask(A >> B) is False
    assert kb.ask(A >> (B >> A)) is True
    kb.tell(A >> B)
    kb.tell(B >> C)
    assert kb.ask(A) is False
    assert kb.ask(B) is False
    assert kb.ask(C) is False
    assert kb.ask(~A) is False
    assert kb.ask(~B) is False
    assert kb.ask(~C) is False
    assert kb.ask(A >> C) is True
    kb.tell(A)
    assert kb.ask(A) is True
    assert kb.ask(B) is True
    assert kb.ask(C) is True
    assert kb.ask(~C) is False
    kb.retract(A)
    assert kb.ask(C) is False


def test_propKB_tolerant():
    """"tolerant to bad input"""
    kb = PropKB()
    A, B, C = symbols('A,B,C')
    assert kb.ask(B) is False

def test_satisfiable_non_symbols():
    x, y = symbols('x y')
    assumptions = Q.zero(x*y)
    facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y))
    query = ~Q.zero(x) & ~Q.zero(y)
    refutations = [
        {Q.zero(x): True, Q.zero(x*y): True},
        {Q.zero(y): True, Q.zero(x*y): True},
        {Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True},
        {Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True},
        {Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}]
    assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
    assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
    assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
    assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations

def test_satisfiable_bool():
    from sympy.core.singleton import S
    assert satisfiable(true) == {true: true}
    assert satisfiable(S.true) == {true: true}
    assert satisfiable(false) is False
    assert satisfiable(S.false) is False


def test_satisfiable_all_models():
    from sympy.abc import A, B
    assert next(satisfiable(False, all_models=True)) is False
    assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
    assert list(satisfiable(True, all_models=True)) == [{true: true}]

    models = [{A: True, B: False}, {A: False, B: True}]
    result = satisfiable(A ^ B, all_models=True)
    models.remove(next(result))
    models.remove(next(result))
    raises(StopIteration, lambda: next(result))
    assert not models

    assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
    [{A: False, B: False}, {A: True, B: True}]

    models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
    for model in satisfiable(A >> B, all_models=True):
        models.remove(model)
    assert not models

    # This is a santiy test to check that only the required number
    # of solutions are generated. The expr below has 2**100 - 1 models
    # which would time out the test if all are generated at once.
    from sympy.utilities.iterables import numbered_symbols
    from sympy.logic.boolalg import Or
    sym = numbered_symbols()
    X = [next(sym) for i in range(100)]
    result = satisfiable(Or(*X), all_models=True)
    for i in range(10):
        assert next(result)


def test_z3():
    z3 = import_module("z3")

    if not z3:
        skip("z3 not installed.")
    A, B, C = symbols('A,B,C')
    x, y, z = symbols('x,y,z')
    assert z3_satisfiable((x >= 2) & (x < 1)) is False
    assert z3_satisfiable( A & ~A ) is False

    model = z3_satisfiable(A & (~A | B | C))
    assert bool(model) is True
    assert model[A] is True

    # test nonlinear function
    assert z3_satisfiable((x ** 2 >= 2) & (x < 1) & (x > -1)) is False


def test_z3_vs_lra_dpll2():
    z3 = import_module("z3")
    if z3 is None:
        skip("z3 not installed.")

    def boolean_formula_to_encoded_cnf(bf):
        cnf = CNF.from_prop(bf)
        enc = EncodedCNF()
        enc.from_cnf(cnf)
        return enc

    def make_random_cnf(num_clauses=5, num_constraints=10, num_var=2):
        assert num_clauses <= num_constraints
        constraints = make_random_problem(num_variables=num_var, num_constraints=num_constraints, rational=False)
        clauses = [[cons] for cons in constraints[:num_clauses]]
        for cons in constraints[num_clauses:]:
            if isinstance(cons, Unequality):
                cons = ~cons
            i = randint(0, num_clauses-1)
            clauses[i].append(cons)

        clauses = [Or(*clause) for clause in clauses]
        cnf = And(*clauses)
        return boolean_formula_to_encoded_cnf(cnf)

    lra_dpll2_satisfiable = lambda x: dpll2_satisfiable(x, use_lra_theory=True)

    for _ in range(50):
        cnf = make_random_cnf(num_clauses=10, num_constraints=15, num_var=2)

        try:
            z3_sat = z3_satisfiable(cnf)
        except z3.z3types.Z3Exception:
            continue

        lra_dpll2_sat = lra_dpll2_satisfiable(cnf) is not False

        assert z3_sat == lra_dpll2_sat