Spaces:
Sleeping
Sleeping
File size: 47,865 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 |
import copy
from sympy.core import S
from sympy.core.function import expand_mul
from sympy.functions.elementary.miscellaneous import Min, sqrt
from sympy.functions.elementary.complexes import sign
from .exceptions import NonSquareMatrixError, NonPositiveDefiniteMatrixError
from .utilities import _get_intermediate_simp, _iszero
from .determinant import _find_reasonable_pivot_naive
def _rank_decomposition(M, iszerofunc=_iszero, simplify=False):
r"""Returns a pair of matrices (`C`, `F`) with matching rank
such that `A = C F`.
Parameters
==========
iszerofunc : Function, optional
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Bool or Function, optional
A function used to simplify elements when looking for a
pivot. By default SymPy's ``simplify`` is used.
Returns
=======
(C, F) : Matrices
`C` and `F` are full-rank matrices with rank as same as `A`,
whose product gives `A`.
See Notes for additional mathematical details.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([
... [1, 3, 1, 4],
... [2, 7, 3, 9],
... [1, 5, 3, 1],
... [1, 2, 0, 8]
... ])
>>> C, F = A.rank_decomposition()
>>> C
Matrix([
[1, 3, 4],
[2, 7, 9],
[1, 5, 1],
[1, 2, 8]])
>>> F
Matrix([
[1, 0, -2, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
>>> C * F == A
True
Notes
=====
Obtaining `F`, an RREF of `A`, is equivalent to creating a
product
.. math::
E_n E_{n-1} ... E_1 A = F
where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or
permutation matrices equivalent to each row-reduction step.
The inverse of the same product of elimination matrices gives
`C`:
.. math::
C = \left(E_n E_{n-1} \dots E_1\right)^{-1}
It is not necessary, however, to actually compute the inverse:
the columns of `C` are those from the original matrix with the
same column indices as the indices of the pivot columns of `F`.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rank_factorization
.. [2] Piziak, R.; Odell, P. L. (1 June 1999).
"Full Rank Factorization of Matrices".
Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
See Also
========
sympy.matrices.matrixbase.MatrixBase.rref
"""
F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc,
pivots=True)
rank = len(pivot_cols)
C = M.extract(range(M.rows), pivot_cols)
F = F[:rank, :]
return C, F
def _liupc(M):
"""Liu's algorithm, for pre-determination of the Elimination Tree of
the given matrix, used in row-based symbolic Cholesky factorization.
Examples
========
>>> from sympy import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
==========
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
# Algorithm 2.4, p 17 of reference
# get the indices of the elements that are non-zero on or below diag
R = [[] for r in range(M.rows)]
for r, c, _ in M.row_list():
if c <= r:
R[r].append(c)
inf = len(R) # nothing will be this large
parent = [inf]*M.rows
virtual = [inf]*M.rows
for r in range(M.rows):
for c in R[r][:-1]:
while virtual[c] < r:
t = virtual[c]
virtual[c] = r
c = t
if virtual[c] == inf:
parent[c] = virtual[c] = r
return R, parent
def _row_structure_symbolic_cholesky(M):
"""Symbolic cholesky factorization, for pre-determination of the
non-zero structure of the Cholesky factororization.
Examples
========
>>> from sympy import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
References
==========
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
R, parent = M.liupc()
inf = len(R) # this acts as infinity
Lrow = copy.deepcopy(R)
for k in range(M.rows):
for j in R[k]:
while j != inf and j != k:
Lrow[k].append(j)
j = parent[j]
Lrow[k] = sorted(set(Lrow[k]))
return Lrow
def _cholesky(M, hermitian=True):
"""Returns the Cholesky-type decomposition L of a matrix A
such that L * L.H == A if hermitian flag is True,
or L * L.T == A if hermitian is False.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix if it is False.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
L = MutableDenseMatrix.zeros(M.rows, M.rows)
if hermitian:
for i in range(M.rows):
for j in range(i):
L[i, j] = ((1 / L[j, j])*(M[i, j] -
sum(L[i, k]*L[j, k].conjugate() for k in range(j))))
Lii2 = (M[i, i] -
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
if Lii2.is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
L[i, i] = sqrt(Lii2)
else:
for i in range(M.rows):
for j in range(i):
L[i, j] = ((1 / L[j, j])*(M[i, j] -
sum(L[i, k]*L[j, k] for k in range(j))))
L[i, i] = sqrt(M[i, i] -
sum(L[i, k]**2 for k in range(i)))
return M._new(L)
def _cholesky_sparse(M, hermitian=True):
"""
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix
Examples
========
>>> from sympy import SparseMatrix
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = SparseMatrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = SparseMatrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
sympy.matrices.sparse.SparseMatrix.LDLdecomposition
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
dps = _get_intermediate_simp(expand_mul, expand_mul)
Crowstruc = M.row_structure_symbolic_cholesky()
C = MutableDenseMatrix.zeros(M.rows)
for i in range(len(Crowstruc)):
for j in Crowstruc[i]:
if i != j:
C[i, j] = M[i, j]
summ = 0
for p1 in Crowstruc[i]:
if p1 < j:
for p2 in Crowstruc[j]:
if p2 < j:
if p1 == p2:
if hermitian:
summ += C[i, p1]*C[j, p1].conjugate()
else:
summ += C[i, p1]*C[j, p1]
else:
break
else:
break
C[i, j] = dps((C[i, j] - summ) / C[j, j])
else: # i == j
C[j, j] = M[j, j]
summ = 0
for k in Crowstruc[j]:
if k < j:
if hermitian:
summ += C[j, k]*C[j, k].conjugate()
else:
summ += C[j, k]**2
else:
break
Cjj2 = dps(C[j, j] - summ)
if hermitian and Cjj2.is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
C[j, j] = sqrt(Cjj2)
return M._new(C)
def _LDLdecomposition(M, hermitian=True):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.H == A if hermitian flag is True, or
L * D * L.T == A if hermitian is False.
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix otherwise.
Examples
========
>>> from sympy import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0],
[-I/3, 1]])
>>> D
Matrix([
[9, 0],
[0, 4]])
>>> L*D*L.H == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
D = MutableDenseMatrix.zeros(M.rows, M.rows)
L = MutableDenseMatrix.eye(M.rows)
if hermitian:
for i in range(M.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
D[i, i] = (M[i, i] -
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
if D[i, i].is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
else:
for i in range(M.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
return M._new(L), M._new(D)
def _LDLdecomposition_sparse(M, hermitian=True):
"""
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
symmetric, positive-definite and non-singular.
This method eliminates the use of square root and ensures that all
the diagonal entries of L are 1.
Examples
========
>>> from sympy import SparseMatrix
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T == A
True
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
dps = _get_intermediate_simp(expand_mul, expand_mul)
Lrowstruc = M.row_structure_symbolic_cholesky()
L = MutableDenseMatrix.eye(M.rows)
D = MutableDenseMatrix.zeros(M.rows, M.cols)
for i in range(len(Lrowstruc)):
for j in Lrowstruc[i]:
if i != j:
L[i, j] = M[i, j]
summ = 0
for p1 in Lrowstruc[i]:
if p1 < j:
for p2 in Lrowstruc[j]:
if p2 < j:
if p1 == p2:
if hermitian:
summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1]
else:
summ += L[i, p1]*L[j, p1]*D[p1, p1]
else:
break
else:
break
L[i, j] = dps((L[i, j] - summ) / D[j, j])
else: # i == j
D[i, i] = M[i, i]
summ = 0
for k in Lrowstruc[i]:
if k < i:
if hermitian:
summ += L[i, k]*L[i, k].conjugate()*D[k, k]
else:
summ += L[i, k]**2*D[k, k]
else:
break
D[i, i] = dps(D[i, i] - summ)
if hermitian and D[i, i].is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
return M._new(L), M._new(D)
def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False):
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
diagonal, U is an upper triangular matrix, and perm is a list of row
swap index pairs. If A is the original matrix, then
``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such
that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``.
See documentation for LUCombined for details about the keyword argument
rankcheck, iszerofunc, and simpfunc.
Parameters
==========
rankcheck : bool, optional
Determines if this function should detect the rank
deficiency of the matrixis and should raise a
``ValueError``.
iszerofunc : function, optional
A function which determines if a given expression is zero.
The function should be a callable that takes a single
SymPy expression and returns a 3-valued boolean value
``True``, ``False``, or ``None``.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
simpfunc : function or None, optional
A function that simplifies the input.
If this is specified as a function, this function should be
a callable that takes a single SymPy expression and returns
an another SymPy expression that is algebraically
equivalent.
If ``None``, it indicates that the pivot search algorithm
should not attempt to simplify any candidate pivots.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.dense.DenseMatrix.LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc, rankcheck=rankcheck)
# L is lower triangular ``M.rows x M.rows``
# U is upper triangular ``M.rows x M.cols``
# L has unit diagonal. For each column in combined, the subcolumn
# below the diagonal of combined is shared by L.
# If L has more columns than combined, then the remaining subcolumns
# below the diagonal of L are zero.
# The upper triangular portion of L and combined are equal.
def entry_L(i, j):
if i < j:
# Super diagonal entry
return M.zero
elif i == j:
return M.one
elif j < combined.cols:
return combined[i, j]
# Subdiagonal entry of L with no corresponding
# entry in combined
return M.zero
def entry_U(i, j):
return M.zero if i > j else combined[i, j]
L = M._new(combined.rows, combined.rows, entry_L)
U = M._new(combined.rows, combined.cols, entry_U)
return L, U, p
def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
r"""Compute the PLU decomposition of the matrix.
Parameters
==========
rankcheck : bool, optional
Determines if this function should detect the rank
deficiency of the matrixis and should raise a
``ValueError``.
iszerofunc : function, optional
A function which determines if a given expression is zero.
The function should be a callable that takes a single
SymPy expression and returns a 3-valued boolean value
``True``, ``False``, or ``None``.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
simpfunc : function or None, optional
A function that simplifies the input.
If this is specified as a function, this function should be
a callable that takes a single SymPy expression and returns
an another SymPy expression that is algebraically
equivalent.
If ``None``, it indicates that the pivot search algorithm
should not attempt to simplify any candidate pivots.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
Returns
=======
(lu, row_swaps) : (Matrix, list)
If the original matrix is a $m, n$ matrix:
*lu* is a $m, n$ matrix, which contains result of the
decomposition in a compressed form. See the notes section
to see how the matrix is compressed.
*row_swaps* is a $m$-element list where each element is a
pair of row exchange indices.
``A = (L*U).permute_backward(perm)``, and the row
permutation matrix $P$ from the formula $P A = L U$ can be
computed by ``P=eye(A.row).permute_forward(perm)``.
Raises
======
ValueError
Raised if ``rankcheck=True`` and the matrix is found to
be rank deficient during the computation.
Notes
=====
About the PLU decomposition:
PLU decomposition is a generalization of a LU decomposition
which can be extended for rank-deficient matrices.
It can further be generalized for non-square matrices, and this
is the notation that SymPy is using.
PLU decomposition is a decomposition of a $m, n$ matrix $A$ in
the form of $P A = L U$ where
* $L$ is a $m, m$ lower triangular matrix with unit diagonal
entries.
* $U$ is a $m, n$ upper triangular matrix.
* $P$ is a $m, m$ permutation matrix.
So, for a square matrix, the decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1, n-1}
\end{bmatrix}
And for a matrix with more rows than the columns,
the decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
& \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0
& \cdots & 0 \\
L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1
& \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots
& \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1}
& 0 & \cdots & 1 \\
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1, n-1} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
Finally, for a matrix with more columns than the rows, the
decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
& \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
& \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, m-1}
& \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots
& \cdots & \vdots \\
0 & 0 & 0 & \cdots & U_{m-1, m-1}
& \cdots & U_{m-1, n-1} \\
\end{bmatrix}
About the compressed LU storage:
The results of the decomposition are often stored in compressed
forms rather than returning $L$ and $U$ matrices individually.
It may be less intiuitive, but it is commonly used for a lot of
numeric libraries because of the efficiency.
The storage matrix is defined as following for this specific
method:
* The subdiagonal elements of $L$ are stored in the subdiagonal
portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever
$i > j$.
* The elements on the diagonal of $L$ are all 1, and are not
explicitly stored.
* $U$ is stored in the upper triangular portion of $LU$, that is
$LU_{i, j} = U_{i, j}$ whenever $i <= j$.
* For a case of $m > n$, the right side of the $L$ matrix is
trivial to store.
* For a case of $m < n$, the below side of the $U$ matrix is
trivial to store.
So, for a square matrix, the compressed output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1}
\end{bmatrix}
For a matrix with more rows than the columns, the compressed
output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots
& U_{n-1, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots
& L_{m-1, n-1} \\
\end{bmatrix}
For a matrix with more columns than the rows, the compressed
output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
& \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
& \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1}
& \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots
& \cdots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1}
& \cdots & U_{m-1, n-1} \\
\end{bmatrix}
About the pivot searching algorithm:
When a matrix contains symbolic entries, the pivot search algorithm
differs from the case where every entry can be categorized as zero or
nonzero.
The algorithm searches column by column through the submatrix whose
top left entry coincides with the pivot position.
If it exists, the pivot is the first entry in the current search
column that iszerofunc guarantees is nonzero.
If no such candidate exists, then each candidate pivot is simplified
if simpfunc is not None.
The search is repeated, with the difference that a candidate may be
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
In the second search the pivot is the first candidate that
iszerofunc can guarantee is nonzero.
If no such candidate exists, then the pivot is the first candidate
for which iszerofunc returns None.
If no such candidate exists, then the search is repeated in the next
column to the right.
The pivot search algorithm differs from the one in ``rref()``, which
relies on ``_find_reasonable_pivot()``.
Future versions of ``LUdecomposition_simple()`` may use
``_find_reasonable_pivot()``.
See Also
========
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
LUdecompositionFF
LUsolve
"""
if rankcheck:
# https://github.com/sympy/sympy/issues/9796
pass
if S.Zero in M.shape:
# Define LU decomposition of a matrix with no entries as a matrix
# of the same dimensions with all zero entries.
return M.zeros(M.rows, M.cols), []
dps = _get_intermediate_simp()
lu = M.as_mutable()
row_swaps = []
pivot_col = 0
for pivot_row in range(0, lu.rows - 1):
# Search for pivot. Prefer entry that iszeropivot determines
# is nonzero, over entry that iszeropivot cannot guarantee
# is zero.
# XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
# to _find_reasonable_pivot().
# In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
# calls sympy.simplify(), and not the simplification function passed in via
# the keyword argument simpfunc.
iszeropivot = True
while pivot_col != M.cols and iszeropivot:
sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows))
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
iszeropivot = pivot_value is None
if iszeropivot:
# All candidate pivots in this column are zero.
# Proceed to next column.
pivot_col += 1
if rankcheck and pivot_col != pivot_row:
# All entries including and below the pivot position are
# zero, which indicates that the rank of the matrix is
# strictly less than min(num rows, num cols)
# Mimic behavior of previous implementation, by throwing a
# ValueError.
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
if candidate_pivot_row is None and iszeropivot:
# If candidate_pivot_row is None and iszeropivot is True
# after pivot search has completed, then the submatrix
# below and to the right of (pivot_row, pivot_col) is
# all zeros, indicating that Gaussian elimination is
# complete.
return lu, row_swaps
# Update entries simplified during pivot search.
for offset, val in ind_simplified_pairs:
lu[pivot_row + offset, pivot_col] = val
if pivot_row != candidate_pivot_row:
# Row swap book keeping:
# Record which rows were swapped.
# Update stored portion of L factor by multiplying L on the
# left and right with the current permutation.
# Swap rows of U.
row_swaps.append([pivot_row, candidate_pivot_row])
# Update L.
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
# Swap pivot row of U with candidate pivot row.
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
# Introduce zeros below the pivot by adding a multiple of the
# pivot row to a row under it, and store the result in the
# row under it.
# Only entries in the target row whose index is greater than
# start_col may be nonzero.
start_col = pivot_col + 1
for row in range(pivot_row + 1, lu.rows):
# Store factors of L in the subcolumn below
# (pivot_row, pivot_row).
lu[row, pivot_row] = \
dps(lu[row, pivot_col]/lu[pivot_row, pivot_col])
# Form the linear combination of the pivot row and the current
# row below the pivot row that zeros the entries below the pivot.
# Employing slicing instead of a loop here raises
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
# in sympy/matrices/tests/test_sparse.py.
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
for c in range(start_col, lu.cols):
lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c])
if pivot_row != pivot_col:
# matrix rank < min(num rows, num cols),
# so factors of L are not stored directly below the pivot.
# These entries are zero by construction, so don't bother
# computing them.
for row in range(pivot_row + 1, lu.rows):
lu[row, pivot_col] = M.zero
pivot_col += 1
if pivot_col == lu.cols:
# All candidate pivots are zero implies that Gaussian
# elimination is complete.
return lu, row_swaps
if rankcheck:
if iszerofunc(
lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
return lu, row_swaps
def _LUdecompositionFF(M):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
See Also
========
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
LUdecomposition_Simple
LUsolve
References
==========
.. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = M.rows, M.cols
U, L, P = M.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L [k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot * Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
def _singular_value_decomposition(A):
r"""Returns a Condensed Singular Value decomposition.
Explanation
===========
A Singular Value decomposition is a decomposition in the form $A = U \Sigma V^H$
where
- $U, V$ are column orthogonal matrix.
- $\Sigma$ is a diagonal matrix, where the main diagonal contains singular
values of matrix A.
A column orthogonal matrix satisfies
$\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies
relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity
matrix with matching dimensions.
For matrices which are not square or are rank-deficient, it is
sufficient to return a column orthogonal matrix because augmenting
them may introduce redundant computations.
In condensed Singular Value Decomposition we only return column orthogonal
matrices because of this reason
If you want to augment the results to return a full orthogonal
decomposition, you should use the following procedures.
- Augment the $U, V$ matrices with columns that are orthogonal to every
other columns and make it square.
- Augment the $\Sigma$ matrix with zero rows to make it have the same
shape as the original matrix.
The procedure will be illustrated in the examples section.
Examples
========
we take a full rank matrix first:
>>> from sympy import Matrix
>>> A = Matrix([[1, 2],[2,1]])
>>> U, S, V = A.singular_value_decomposition()
>>> U
Matrix([
[ sqrt(2)/2, sqrt(2)/2],
[-sqrt(2)/2, sqrt(2)/2]])
>>> S
Matrix([
[1, 0],
[0, 3]])
>>> V
Matrix([
[-sqrt(2)/2, sqrt(2)/2],
[ sqrt(2)/2, sqrt(2)/2]])
If a matrix if square and full rank both U, V
are orthogonal in both directions
>>> U * U.H
Matrix([
[1, 0],
[0, 1]])
>>> U.H * U
Matrix([
[1, 0],
[0, 1]])
>>> V * V.H
Matrix([
[1, 0],
[0, 1]])
>>> V.H * V
Matrix([
[1, 0],
[0, 1]])
>>> A == U * S * V.H
True
>>> C = Matrix([
... [1, 0, 0, 0, 2],
... [0, 0, 3, 0, 0],
... [0, 0, 0, 0, 0],
... [0, 2, 0, 0, 0],
... ])
>>> U, S, V = C.singular_value_decomposition()
>>> V.H * V
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> V * V.H
Matrix([
[1/5, 0, 0, 0, 2/5],
[ 0, 1, 0, 0, 0],
[ 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 0],
[2/5, 0, 0, 0, 4/5]])
If you want to augment the results to be a full orthogonal
decomposition, you should augment $V$ with an another orthogonal
column.
You are able to append an arbitrary standard basis that are linearly
independent to every other columns and you can run the Gram-Schmidt
process to make them augmented as orthogonal basis.
>>> V_aug = V.row_join(Matrix([[0,0,0,0,1],
... [0,0,0,1,0]]).H)
>>> V_aug = V_aug.QRdecomposition()[0]
>>> V_aug
Matrix([
[0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]])
>>> V_aug.H * V_aug
Matrix([
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])
>>> V_aug * V_aug.H
Matrix([
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])
Similarly we augment U
>>> U_aug = U.row_join(Matrix([0,0,1,0]))
>>> U_aug = U_aug.QRdecomposition()[0]
>>> U_aug
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[1, 0, 0, 0]])
>>> U_aug.H * U_aug
Matrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
>>> U_aug * U_aug.H
Matrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
We add 2 zero columns and one row to S
>>> S_aug = S.col_join(Matrix([[0,0,0]]))
>>> S_aug = S_aug.row_join(Matrix([[0,0,0,0],
... [0,0,0,0]]).H)
>>> S_aug
Matrix([
[2, 0, 0, 0, 0],
[0, sqrt(5), 0, 0, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0]])
>>> U_aug * S_aug * V_aug.H == C
True
"""
AH = A.H
m, n = A.shape
if m >= n:
V, S = (AH * A).diagonalize()
ranked = []
for i, x in enumerate(S.diagonal()):
if not x.is_zero:
ranked.append(i)
V = V[:, ranked]
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
S = S.diag(*Singular_vals)
V, _ = V.QRdecomposition()
U = A * V * S.inv()
else:
U, S = (A * AH).diagonalize()
ranked = []
for i, x in enumerate(S.diagonal()):
if not x.is_zero:
ranked.append(i)
U = U[:, ranked]
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
S = S.diag(*Singular_vals)
U, _ = U.QRdecomposition()
V = AH * U * S.inv()
return U, S, V
def _QRdecomposition_optional(M, normalize=True):
def dot(u, v):
return u.dot(v, hermitian=True)
dps = _get_intermediate_simp(expand_mul, expand_mul)
A = M.as_mutable()
ranked = []
Q = A
R = A.zeros(A.cols)
for j in range(A.cols):
for i in range(j):
if Q[:, i].is_zero_matrix:
continue
R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i])
R[i, j] = dps(R[i, j])
Q[:, j] -= Q[:, i] * R[i, j]
Q[:, j] = dps(Q[:, j])
if Q[:, j].is_zero_matrix is not True:
ranked.append(j)
R[j, j] = M.one
Q = Q.extract(range(Q.rows), ranked)
R = R.extract(ranked, range(R.cols))
if normalize:
# Normalization
for i in range(Q.cols):
norm = Q[:, i].norm()
Q[:, i] /= norm
R[i, :] *= norm
return M.__class__(Q), M.__class__(R)
def _QRdecomposition(M):
r"""Returns a QR decomposition.
Explanation
===========
A QR decomposition is a decomposition in the form $A = Q R$
where
- $Q$ is a column orthogonal matrix.
- $R$ is a upper triangular (trapezoidal) matrix.
A column orthogonal matrix satisfies
$\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies
relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity
matrix with matching dimensions.
For matrices which are not square or are rank-deficient, it is
sufficient to return a column orthogonal matrix because augmenting
them may introduce redundant computations.
And an another advantage of this is that you can easily inspect the
matrix rank by counting the number of columns of $Q$.
If you want to augment the results to return a full orthogonal
decomposition, you should use the following procedures.
- Augment the $Q$ matrix with columns that are orthogonal to every
other columns and make it square.
- Augment the $R$ matrix with zero rows to make it have the same
shape as the original matrix.
The procedure will be illustrated in the examples section.
Examples
========
A full rank matrix example:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
If the matrix is square and full rank, the $Q$ matrix becomes
orthogonal in both directions, and needs no augmentation.
>>> Q * Q.H
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Q.H * Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> A == Q*R
True
A rank deficient matrix example:
>>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175],
[ 3/7, 158/175],
[-2/7, 6/35]])
>>> R
Matrix([
[14, 21, 0],
[ 0, 175, 0]])
QRdecomposition might return a matrix Q that is rectangular.
In this case the orthogonality condition might be satisfied as
$\mathbb{I} = Q.H*Q$ but not in the reversed product
$\mathbb{I} = Q * Q.H$.
>>> Q.H * Q
Matrix([
[1, 0],
[0, 1]])
>>> Q * Q.H
Matrix([
[27261/30625, 348/30625, -1914/6125],
[ 348/30625, 30589/30625, 198/6125],
[ -1914/6125, 198/6125, 136/1225]])
If you want to augment the results to be a full orthogonal
decomposition, you should augment $Q$ with an another orthogonal
column.
You are able to append an identity matrix,
and you can run the Gram-Schmidt
process to make them augmented as orthogonal basis.
>>> Q_aug = Q.row_join(Matrix.eye(3))
>>> Q_aug = Q_aug.QRdecomposition()[0]
>>> Q_aug
Matrix([
[ 6/7, -69/175, 58/175],
[ 3/7, 158/175, -6/175],
[-2/7, 6/35, 33/35]])
>>> Q_aug.H * Q_aug
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Q_aug * Q_aug.H
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
Augmenting the $R$ matrix with zero row is straightforward.
>>> R_aug = R.col_join(Matrix([[0, 0, 0]]))
>>> R_aug
Matrix([
[14, 21, 0],
[ 0, 175, 0],
[ 0, 0, 0]])
>>> Q_aug * R_aug == A
True
A zero matrix example:
>>> from sympy import Matrix
>>> A = Matrix.zeros(3, 4)
>>> Q, R = A.QRdecomposition()
They may return matrices with zero rows and columns.
>>> Q
Matrix(3, 0, [])
>>> R
Matrix(0, 4, [])
>>> Q*R
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
As the same augmentation rule described above, $Q$ can be augmented
with columns of an identity matrix and $R$ can be augmented with
rows of a zero matrix.
>>> Q_aug = Q.row_join(Matrix.eye(3))
>>> R_aug = R.col_join(Matrix.zeros(3, 4))
>>> Q_aug * Q_aug.T
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R_aug
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
>>> Q_aug * R_aug == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
QRsolve
"""
return _QRdecomposition_optional(M, normalize=True)
def _upper_hessenberg_decomposition(A):
"""Converts a matrix into Hessenberg matrix H.
Returns 2 matrices H, P s.t.
$P H P^{T} = A$, where H is an upper hessenberg matrix
and P is an orthogonal matrix
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([
... [1,2,3],
... [-3,5,6],
... [4,-8,9],
... ])
>>> H, P = A.upper_hessenberg_decomposition()
>>> H
Matrix([
[1, 6/5, 17/5],
[5, 213/25, -134/25],
[0, 216/25, 137/25]])
>>> P
Matrix([
[1, 0, 0],
[0, -3/5, 4/5],
[0, 4/5, 3/5]])
>>> P * H * P.H == A
True
References
==========
.. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
"""
M = A.as_mutable()
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
n = M.cols
P = M.eye(n)
H = M
for j in range(n - 2):
u = H[j + 1:, j]
if u[1:, :].is_zero_matrix:
continue
if sign(u[0]) != 0:
u[0] = u[0] + sign(u[0]) * u.norm()
else:
u[0] = u[0] + u.norm()
v = u / u.norm()
H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H
return H, P
|