File size: 34,551 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
from types import FunctionType

from sympy.core.cache import cacheit
from sympy.core.numbers import Float, Integer
from sympy.core.singleton import S
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.mul import Mul
from sympy.polys import PurePoly, cancel
from sympy.functions.combinatorial.numbers import nC
from sympy.polys.matrices.domainmatrix import DomainMatrix
from sympy.polys.matrices.ddm import DDM

from .exceptions import NonSquareMatrixError
from .utilities import (
    _get_intermediate_simp, _get_intermediate_simp_bool,
    _iszero, _is_zero_after_expand_mul, _dotprodsimp, _simplify)


def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
    """ Find the lowest index of an item in ``col`` that is
    suitable for a pivot.  If ``col`` consists only of
    Floats, the pivot with the largest norm is returned.
    Otherwise, the first element where ``iszerofunc`` returns
    False is used.  If ``iszerofunc`` does not return false,
    items are simplified and retested until a suitable
    pivot is found.

    Returns a 4-tuple
        (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
    where pivot_offset is the index of the pivot, pivot_val is
    the (possibly simplified) value of the pivot, assumed_nonzero
    is True if an assumption that the pivot was non-zero
    was made without being proved, and newly_determined are
    elements that were simplified during the process of pivot
    finding."""

    newly_determined = []
    col = list(col)
    # a column that contains a mix of floats and integers
    # but at least one float is considered a numerical
    # column, and so we do partial pivoting
    if all(isinstance(x, (Float, Integer)) for x in col) and any(
            isinstance(x, Float) for x in col):
        col_abs = [abs(x) for x in col]
        max_value = max(col_abs)
        if iszerofunc(max_value):
            # just because iszerofunc returned True, doesn't
            # mean the value is numerically zero.  Make sure
            # to replace all entries with numerical zeros
            if max_value != 0:
                newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
            return (None, None, False, newly_determined)
        index = col_abs.index(max_value)
        return (index, col[index], False, newly_determined)

    # PASS 1 (iszerofunc directly)
    possible_zeros = []
    for i, x in enumerate(col):
        is_zero = iszerofunc(x)
        # is someone wrote a custom iszerofunc, it may return
        # BooleanFalse or BooleanTrue instead of True or False,
        # so use == for comparison instead of `is`
        if is_zero == False:
            # we found something that is definitely not zero
            return (i, x, False, newly_determined)
        possible_zeros.append(is_zero)

    # by this point, we've found no certain non-zeros
    if all(possible_zeros):
        # if everything is definitely zero, we have
        # no pivot
        return (None, None, False, newly_determined)

    # PASS 2 (iszerofunc after simplify)
    # we haven't found any for-sure non-zeros, so
    # go through the elements iszerofunc couldn't
    # make a determination about and opportunistically
    # simplify to see if we find something
    for i, x in enumerate(col):
        if possible_zeros[i] is not None:
            continue
        simped = simpfunc(x)
        is_zero = iszerofunc(simped)
        if is_zero in (True, False):
            newly_determined.append((i, simped))
        if is_zero == False:
            return (i, simped, False, newly_determined)
        possible_zeros[i] = is_zero

    # after simplifying, some things that were recognized
    # as zeros might be zeros
    if all(possible_zeros):
        # if everything is definitely zero, we have
        # no pivot
        return (None, None, False, newly_determined)

    # PASS 3 (.equals(0))
    # some expressions fail to simplify to zero, but
    # ``.equals(0)`` evaluates to True.  As a last-ditch
    # attempt, apply ``.equals`` to these expressions
    for i, x in enumerate(col):
        if possible_zeros[i] is not None:
            continue
        if x.equals(S.Zero):
            # ``.iszero`` may return False with
            # an implicit assumption (e.g., ``x.equals(0)``
            # when ``x`` is a symbol), so only treat it
            # as proved when ``.equals(0)`` returns True
            possible_zeros[i] = True
            newly_determined.append((i, S.Zero))

    if all(possible_zeros):
        return (None, None, False, newly_determined)

    # at this point there is nothing that could definitely
    # be a pivot.  To maintain compatibility with existing
    # behavior, we'll assume that an illdetermined thing is
    # non-zero.  We should probably raise a warning in this case
    i = possible_zeros.index(None)
    return (i, col[i], True, newly_determined)


def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
    """
    Helper that computes the pivot value and location from a
    sequence of contiguous matrix column elements. As a side effect
    of the pivot search, this function may simplify some of the elements
    of the input column. A list of these simplified entries and their
    indices are also returned.
    This function mimics the behavior of _find_reasonable_pivot(),
    but does less work trying to determine if an indeterminate candidate
    pivot simplifies to zero. This more naive approach can be much faster,
    with the trade-off that it may erroneously return a pivot that is zero.

    ``col`` is a sequence of contiguous column entries to be searched for
    a suitable pivot.
    ``iszerofunc`` is a callable that returns a Boolean that indicates
    if its input is zero, or None if no such determination can be made.
    ``simpfunc`` is a callable that simplifies its input. It must return
    its input if it does not simplify its input. Passing in
    ``simpfunc=None`` indicates that the pivot search should not attempt
    to simplify any candidate pivots.

    Returns a 4-tuple:
    (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
    ``pivot_offset`` is the sequence index of the pivot.
    ``pivot_val`` is the value of the pivot.
    pivot_val and col[pivot_index] are equivalent, but will be different
    when col[pivot_index] was simplified during the pivot search.
    ``assumed_nonzero`` is a boolean indicating if the pivot cannot be
    guaranteed to be zero. If assumed_nonzero is true, then the pivot
    may or may not be non-zero. If assumed_nonzero is false, then
    the pivot is non-zero.
    ``newly_determined`` is a list of index-value pairs of pivot candidates
    that were simplified during the pivot search.
    """

    # indeterminates holds the index-value pairs of each pivot candidate
    # that is neither zero or non-zero, as determined by iszerofunc().
    # If iszerofunc() indicates that a candidate pivot is guaranteed
    # non-zero, or that every candidate pivot is zero then the contents
    # of indeterminates are unused.
    # Otherwise, the only viable candidate pivots are symbolic.
    # In this case, indeterminates will have at least one entry,
    # and all but the first entry are ignored when simpfunc is None.
    indeterminates = []
    for i, col_val in enumerate(col):
        col_val_is_zero = iszerofunc(col_val)
        if col_val_is_zero == False:
            # This pivot candidate is non-zero.
            return i, col_val, False, []
        elif col_val_is_zero is None:
            # The candidate pivot's comparison with zero
            # is indeterminate.
            indeterminates.append((i, col_val))

    if len(indeterminates) == 0:
        # All candidate pivots are guaranteed to be zero, i.e. there is
        # no pivot.
        return None, None, False, []

    if simpfunc is None:
        # Caller did not pass in a simplification function that might
        # determine if an indeterminate pivot candidate is guaranteed
        # to be nonzero, so assume the first indeterminate candidate
        # is non-zero.
        return indeterminates[0][0], indeterminates[0][1], True, []

    # newly_determined holds index-value pairs of candidate pivots
    # that were simplified during the search for a non-zero pivot.
    newly_determined = []
    for i, col_val in indeterminates:
        tmp_col_val = simpfunc(col_val)
        if id(col_val) != id(tmp_col_val):
            # simpfunc() simplified this candidate pivot.
            newly_determined.append((i, tmp_col_val))
            if iszerofunc(tmp_col_val) == False:
                # Candidate pivot simplified to a guaranteed non-zero value.
                return i, tmp_col_val, False, newly_determined

    return indeterminates[0][0], indeterminates[0][1], True, newly_determined


# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_toeplitz_matrix(M):
    """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
    corresponding to ``M`` and A is the first principal submatrix.
    """

    # the 0 x 0 case is trivial
    if M.rows == 0 and M.cols == 0:
        return M._new(1,1, [M.one])

    #
    # Partition M = [ a_11  R ]
    #                  [ C     A ]
    #

    a, R = M[0,0],   M[0, 1:]
    C, A = M[1:, 0], M[1:,1:]

    #
    # The Toeplitz matrix looks like
    #
    #  [ 1                                     ]
    #  [ -a         1                          ]
    #  [ -RC       -a        1                 ]
    #  [ -RAC     -RC       -a       1         ]
    #  [ -RA**2C -RAC      -RC      -a       1 ]
    #  etc.

    # Compute the diagonal entries.
    # Because multiplying matrix times vector is so much
    # more efficient than matrix times matrix, recursively
    # compute -R * A**n * C.
    diags = [C]
    for i in range(M.rows - 2):
        diags.append(A.multiply(diags[i], dotprodsimp=None))
    diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags]
    diags = [M.one, -a] + diags

    def entry(i,j):
        if j > i:
            return M.zero
        return diags[i - j]

    toeplitz = M._new(M.cols + 1, M.rows, entry)
    return (A, toeplitz)


# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_vector(M):
    """ Run the Berkowitz algorithm and return a vector whose entries
        are the coefficients of the characteristic polynomial of ``M``.

        Given N x N matrix, efficiently compute
        coefficients of characteristic polynomials of ``M``
        without division in the ground domain.

        This method is particularly useful for computing determinant,
        principal minors and characteristic polynomial when ``M``
        has complicated coefficients e.g. polynomials. Semi-direct
        usage of this algorithm is also important in computing
        efficiently sub-resultant PRS.

        Assuming that M is a square matrix of dimension N x N and
        I is N x N identity matrix, then the Berkowitz vector is
        an N x 1 vector whose entries are coefficients of the
        polynomial

                        charpoly(M) = det(t*I - M)

        As a consequence, all polynomials generated by Berkowitz
        algorithm are monic.

        For more information on the implemented algorithm refer to:

        [1] S.J. Berkowitz, On computing the determinant in small
            parallel time using a small number of processors, ACM,
            Information Processing Letters 18, 1984, pp. 147-150

        [2] M. Keber, Division-Free computation of sub-resultants
            using Bezout matrices, Tech. Report MPI-I-2006-1-006,
            Saarbrucken, 2006
    """

    # handle the trivial cases
    if M.rows == 0 and M.cols == 0:
        return M._new(1, 1, [M.one])
    elif M.rows == 1 and M.cols == 1:
        return M._new(2, 1, [M.one, -M[0,0]])

    submat, toeplitz = _berkowitz_toeplitz_matrix(M)

    return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None)


def _adjugate(M, method="berkowitz"):
    """Returns the adjugate, or classical adjoint, of
    a matrix.  That is, the transpose of the matrix of cofactors.

    https://en.wikipedia.org/wiki/Adjugate

    Parameters
    ==========

    method : string, optional
        Method to use to find the cofactors, can be "bareiss", "berkowitz",
        "bird", "laplace" or "lu".

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> M.adjugate()
    Matrix([
    [ 4, -2],
    [-3,  1]])

    See Also
    ========

    cofactor_matrix
    sympy.matrices.matrixbase.MatrixBase.transpose
    """

    return M.cofactor_matrix(method=method).transpose()


# This functions is a candidate for caching if it gets implemented for matrices.
def _charpoly(M, x='lambda', simplify=_simplify):
    """Computes characteristic polynomial det(x*I - M) where I is
    the identity matrix.

    A PurePoly is returned, so using different variables for ``x`` does
    not affect the comparison or the polynomials:

    Parameters
    ==========

    x : string, optional
        Name for the "lambda" variable, defaults to "lambda".

    simplify : function, optional
        Simplification function to use on the characteristic polynomial
        calculated. Defaults to ``simplify``.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.abc import x, y
    >>> M = Matrix([[1, 3], [2, 0]])
    >>> M.charpoly()
    PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
    >>> M.charpoly(x) == M.charpoly(y)
    True
    >>> M.charpoly(x) == M.charpoly(y)
    True

    Specifying ``x`` is optional; a symbol named ``lambda`` is used by
    default (which looks good when pretty-printed in unicode):

    >>> M.charpoly().as_expr()
    lambda**2 - lambda - 6

    And if ``x`` clashes with an existing symbol, underscores will
    be prepended to the name to make it unique:

    >>> M = Matrix([[1, 2], [x, 0]])
    >>> M.charpoly(x).as_expr()
    _x**2 - _x - 2*x

    Whether you pass a symbol or not, the generator can be obtained
    with the gen attribute since it may not be the same as the symbol
    that was passed:

    >>> M.charpoly(x).gen
    _x
    >>> M.charpoly(x).gen == x
    False

    Notes
    =====

    The Samuelson-Berkowitz algorithm is used to compute
    the characteristic polynomial efficiently and without any
    division operations.  Thus the characteristic polynomial over any
    commutative ring without zero divisors can be computed.

    If the determinant det(x*I - M) can be found out easily as
    in the case of an upper or a lower triangular matrix, then
    instead of Samuelson-Berkowitz algorithm, eigenvalues are computed
    and the characteristic polynomial with their help.

    See Also
    ========

    det
    """

    if not M.is_square:
        raise NonSquareMatrixError()

    # Use DomainMatrix. We are already going to convert this to a Poly so there
    # is no need to worry about expanding powers etc. Also since this algorithm
    # does not require division or zero detection it is fine to use EX.
    #
    # M.to_DM() will fall back on EXRAW rather than EX. EXRAW is a lot faster
    # for elementary arithmetic because it does not call cancel for each
    # operation but it generates large unsimplified results that are slow in
    # the subsequent call to simplify. Using EX instead is faster overall
    # but at least in some cases EXRAW+simplify gives a simpler result so we
    # preserve that existing behaviour of charpoly for now...
    dM = M.to_DM()

    K = dM.domain

    cp = dM.charpoly()

    x = uniquely_named_symbol(x, [M], modify=lambda s: '_' + s)

    if K.is_EXRAW or simplify is not _simplify:
        # XXX: Converting back to Expr is expensive. We only do it if the
        # caller supplied a custom simplify function for backwards
        # compatibility or otherwise if the domain was EX. For any other domain
        # there should be no benefit in simplifying at this stage because Poly
        # will put everything into canonical form anyway.
        berk_vector = [K.to_sympy(c) for c in cp]
        berk_vector = [simplify(a) for a in berk_vector]
        p = PurePoly(berk_vector, x)

    else:
        # Convert from the list of domain elements directly to Poly.
        p = PurePoly(cp, x, domain=K)

    return p


def _cofactor(M, i, j, method="berkowitz"):
    """Calculate the cofactor of an element.

    Parameters
    ==========

    method : string, optional
        Method to use to find the cofactors, can be "bareiss", "berkowitz",
        "bird", "laplace" or "lu".

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> M.cofactor(0, 1)
    -3

    See Also
    ========

    cofactor_matrix
    minor
    minor_submatrix
    """

    if not M.is_square or M.rows < 1:
        raise NonSquareMatrixError()

    return S.NegativeOne**((i + j) % 2) * M.minor(i, j, method)


def _cofactor_matrix(M, method="berkowitz"):
    """Return a matrix containing the cofactor of each element.

    Parameters
    ==========

    method : string, optional
        Method to use to find the cofactors, can be "bareiss", "berkowitz",
        "bird", "laplace" or "lu".

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> M.cofactor_matrix()
    Matrix([
    [ 4, -3],
    [-2,  1]])

    See Also
    ========

    cofactor
    minor
    minor_submatrix
    """

    if not M.is_square:
        raise NonSquareMatrixError()

    return M._new(M.rows, M.cols,
            lambda i, j: M.cofactor(i, j, method))

def _per(M):
    """Returns the permanent of a matrix. Unlike determinant,
    permanent is defined for both square and non-square matrices.

    For an m x n matrix, with m less than or equal to n,
    it is given as the sum over the permutations s of size
    less than or equal to m on [1, 2, . . . n] of the product
    from i = 1 to m of M[i, s[i]]. Taking the transpose will
    not affect the value of the permanent.

    In the case of a square matrix, this is the same as the permutation
    definition of the determinant, but it does not take the sign of the
    permutation into account. Computing the permanent with this definition
    is quite inefficient, so here the Ryser formula is used.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> M.per()
    450
    >>> M = Matrix([1, 5, 7])
    >>> M.per()
    13

    References
    ==========

    .. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf
    .. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_%28mathematics%29
    .. [3] https://reference.wolfram.com/language/ref/Permanent.html
    .. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf
    """
    import itertools

    m, n = M.shape
    if m > n:
        M = M.T
        m, n = n, m
    s = list(range(n))

    subsets = []
    for i in range(1, m + 1):
        subsets += list(map(list, itertools.combinations(s, i)))

    perm = 0
    for subset in subsets:
        prod = 1
        sub_len = len(subset)
        for i in range(m):
             prod *= sum(M[i, j] for j in subset)
        perm += prod * S.NegativeOne**sub_len * nC(n - sub_len, m - sub_len)
    perm *= S.NegativeOne**m
    return perm.simplify()

def _det_DOM(M):
    DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
    K = DOM.domain
    return K.to_sympy(DOM.det())

# This functions is a candidate for caching if it gets implemented for matrices.
def _det(M, method="bareiss", iszerofunc=None):
    """Computes the determinant of a matrix if ``M`` is a concrete matrix object
    otherwise return an expressions ``Determinant(M)`` if ``M`` is a
    ``MatrixSymbol`` or other expression.

    Parameters
    ==========

    method : string, optional
        Specifies the algorithm used for computing the matrix determinant.

        If the matrix is at most 3x3, a hard-coded formula is used and the
        specified method is ignored. Otherwise, it defaults to
        ``'bareiss'``.

        Also, if the matrix is an upper or a lower triangular matrix, determinant
        is computed by simple multiplication of diagonal elements, and the
        specified method is ignored.

        If it is set to ``'domain-ge'``, then Gaussian elimination method will
        be used via using DomainMatrix.

        If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
        be used.

        If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.

        If it is set to ``'bird'``, Bird's algorithm will be used [1]_.

        If it is set to ``'laplace'``, Laplace's algorithm will be used.

        Otherwise, if it is set to ``'lu'``, LU decomposition will be used.

        .. note::
            For backward compatibility, legacy keys like "bareis" and
            "det_lu" can still be used to indicate the corresponding
            methods.
            And the keys are also case-insensitive for now. However, it is
            suggested to use the precise keys for specifying the method.

    iszerofunc : FunctionType or None, optional
        If it is set to ``None``, it will be defaulted to ``_iszero`` if the
        method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
        the method is set to ``'lu'``.

        It can also accept any user-specified zero testing function, if it
        is formatted as a function which accepts a single symbolic argument
        and returns ``True`` if it is tested as zero and ``False`` if it
        tested as non-zero, and also ``None`` if it is undecidable.

    Returns
    =======

    det : Basic
        Result of determinant.

    Raises
    ======

    ValueError
        If unrecognized keys are given for ``method`` or ``iszerofunc``.

    NonSquareMatrixError
        If attempted to calculate determinant from a non-square matrix.

    Examples
    ========

    >>> from sympy import Matrix, eye, det
    >>> I3 = eye(3)
    >>> det(I3)
    1
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> det(M)
    -2
    >>> det(M) == M.det()
    True
    >>> M.det(method="domain-ge")
    -2

    References
    ==========

    .. [1] Bird, R. S. (2011). A simple division-free algorithm for computing
           determinants. Inf. Process. Lett., 111(21), 1072-1074. doi:
           10.1016/j.ipl.2011.08.006
    """

    # sanitize `method`
    method = method.lower()

    if method == "bareis":
        method = "bareiss"
    elif method == "det_lu":
        method = "lu"

    if method not in ("bareiss", "berkowitz", "lu", "domain-ge", "bird",
                      "laplace"):
        raise ValueError("Determinant method '%s' unrecognized" % method)

    if iszerofunc is None:
        if method == "bareiss":
            iszerofunc = _is_zero_after_expand_mul
        elif method == "lu":
            iszerofunc = _iszero

    elif not isinstance(iszerofunc, FunctionType):
        raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)

    n = M.rows

    if n == M.cols: # square check is done in individual method functions
        if n == 0:
            return M.one
        elif n == 1:
            return M[0, 0]
        elif n == 2:
            m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
            return _get_intermediate_simp(_dotprodsimp)(m)
        elif n == 3:
            m =  (M[0, 0] * M[1, 1] * M[2, 2]
                + M[0, 1] * M[1, 2] * M[2, 0]
                + M[0, 2] * M[1, 0] * M[2, 1]
                - M[0, 2] * M[1, 1] * M[2, 0]
                - M[0, 0] * M[1, 2] * M[2, 1]
                - M[0, 1] * M[1, 0] * M[2, 2])
            return _get_intermediate_simp(_dotprodsimp)(m)

    dets = []
    for b in M.strongly_connected_components():
        if method == "domain-ge": # uses DomainMatrix to evaluate determinant
            det = _det_DOM(M[b, b])
        elif method == "bareiss":
            det = M[b, b]._eval_det_bareiss(iszerofunc=iszerofunc)
        elif method == "berkowitz":
            det = M[b, b]._eval_det_berkowitz()
        elif method == "lu":
            det = M[b, b]._eval_det_lu(iszerofunc=iszerofunc)
        elif method == "bird":
            det = M[b, b]._eval_det_bird()
        elif method == "laplace":
            det = M[b, b]._eval_det_laplace()
        dets.append(det)
    return Mul(*dets)


# This functions is a candidate for caching if it gets implemented for matrices.
def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul):
    """Compute matrix determinant using Bareiss' fraction-free
    algorithm which is an extension of the well known Gaussian
    elimination method. This approach is best suited for dense
    symbolic matrices and will result in a determinant with
    minimal number of fractions. It means that less term
    rewriting is needed on resulting formulae.

    Parameters
    ==========

    iszerofunc : function, optional
        The function to use to determine zeros when doing an LU decomposition.
        Defaults to ``lambda x: x.is_zero``.

    TODO: Implement algorithm for sparse matrices (SFF),
    http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
    """

    # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
    # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
    def bareiss(mat, cumm=1):
        if mat.rows == 0:
            return mat.one
        elif mat.rows == 1:
            return mat[0, 0]

        # find a pivot and extract the remaining matrix
        # With the default iszerofunc, _find_reasonable_pivot slows down
        # the computation by the factor of 2.5 in one test.
        # Relevant issues: #10279 and #13877.
        pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc)
        if pivot_pos is None:
            return mat.zero

        # if we have a valid pivot, we'll do a "row swap", so keep the
        # sign of the det
        sign = (-1) ** (pivot_pos % 2)

        # we want every row but the pivot row and every column
        rows = [i for i in range(mat.rows) if i != pivot_pos]
        cols = list(range(mat.cols))
        tmp_mat = mat.extract(rows, cols)

        def entry(i, j):
            ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
            if _get_intermediate_simp_bool(True):
                return _dotprodsimp(ret)
            elif not ret.is_Atom:
                return cancel(ret)
            return ret

        return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)

    if not M.is_square:
        raise NonSquareMatrixError()

    if M.rows == 0:
        return M.one
        # sympy/matrices/tests/test_matrices.py contains a test that
        # suggests that the determinant of a 0 x 0 matrix is one, by
        # convention.

    return bareiss(M)


def _det_berkowitz(M):
    """ Use the Berkowitz algorithm to compute the determinant."""

    if not M.is_square:
        raise NonSquareMatrixError()

    if M.rows == 0:
        return M.one
        # sympy/matrices/tests/test_matrices.py contains a test that
        # suggests that the determinant of a 0 x 0 matrix is one, by
        # convention.

    berk_vector = _berkowitz_vector(M)
    return (-1)**(len(berk_vector) - 1) * berk_vector[-1]


# This functions is a candidate for caching if it gets implemented for matrices.
def _det_LU(M, iszerofunc=_iszero, simpfunc=None):
    """ Computes the determinant of a matrix from its LU decomposition.
    This function uses the LU decomposition computed by
    LUDecomposition_Simple().

    The keyword arguments iszerofunc and simpfunc are passed to
    LUDecomposition_Simple().
    iszerofunc is a callable that returns a boolean indicating if its
    input is zero, or None if it cannot make the determination.
    simpfunc is a callable that simplifies its input.
    The default is simpfunc=None, which indicate that the pivot search
    algorithm should not attempt to simplify any candidate pivots.
    If simpfunc fails to simplify its input, then it must return its input
    instead of a copy.

    Parameters
    ==========

    iszerofunc : function, optional
        The function to use to determine zeros when doing an LU decomposition.
        Defaults to ``lambda x: x.is_zero``.

    simpfunc : function, optional
        The simplification function to use when looking for zeros for pivots.
    """

    if not M.is_square:
        raise NonSquareMatrixError()

    if M.rows == 0:
        return M.one
        # sympy/matrices/tests/test_matrices.py contains a test that
        # suggests that the determinant of a 0 x 0 matrix is one, by
        # convention.

    lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
            simpfunc=simpfunc)
    # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
    # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
    # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
    # LUdecomposition_Simple() returns a list of row exchange index pairs, rather
    # than a permutation matrix, but det(P) = (-1)**len(row_swaps).

    # Avoid forming the potentially time consuming  product of U's diagonal entries
    # if the product is zero.
    # Bottom right entry of U is 0 => det(A) = 0.
    # It may be impossible to determine if this entry of U is zero when it is symbolic.
    if iszerofunc(lu[lu.rows-1, lu.rows-1]):
        return M.zero

    # Compute det(P)
    det = -M.one if len(row_swaps)%2 else M.one

    # Compute det(U) by calculating the product of U's diagonal entries.
    # The upper triangular portion of lu is the upper triangular portion of the
    # U factor in the LU decomposition.
    for k in range(lu.rows):
        det *= lu[k, k]

    # return det(P)*det(U)
    return det


@cacheit
def __det_laplace(M):
    """Compute the determinant of a matrix using Laplace expansion.

    This is a recursive function, and it should not be called directly.
    Use _det_laplace() instead. The reason for splitting this function
    into two is to allow caching of determinants of submatrices. While
    one could also define this function inside _det_laplace(), that
    would remove the advantage of using caching in Cramer Solve.
    """
    n = M.shape[0]
    if n == 1:
        return M[0]
    elif n == 2:
        return M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
    else:
        return sum((-1) ** i * M[0, i] *
                   __det_laplace(M.minor_submatrix(0, i)) for i in range(n))


def _det_laplace(M):
    """Compute the determinant of a matrix using Laplace expansion.

    While Laplace expansion is not the most efficient method of computing
    a determinant, it is a simple one, and it has the advantage of
    being division free. To improve efficiency, this function uses
    caching to avoid recomputing determinants of submatrices.
    """
    if not M.is_square:
        raise NonSquareMatrixError()
    if M.shape[0] == 0:
        return M.one
        # sympy/matrices/tests/test_matrices.py contains a test that
        # suggests that the determinant of a 0 x 0 matrix is one, by
        # convention.
    return __det_laplace(M.as_immutable())


def _det_bird(M):
    r"""Compute the determinant of a matrix using Bird's algorithm.

    Bird's algorithm is a simple division-free algorithm for computing, which
    is of lower order than the Laplace's algorithm. It is described in [1]_.

    References
    ==========

    .. [1] Bird, R. S. (2011). A simple division-free algorithm for computing
           determinants. Inf. Process. Lett., 111(21), 1072-1074. doi:
           10.1016/j.ipl.2011.08.006
    """
    def mu(X):
        n = X.shape[0]
        zero = X.domain.zero

        total = zero
        diag_sums = [zero]
        for i in reversed(range(1, n)):
            total -= X[i][i]
            diag_sums.append(total)
        diag_sums = diag_sums[::-1]

        elems = [[zero] * i + [diag_sums[i]] + X_i[i + 1:] for i, X_i in
                 enumerate(X)]
        return DDM(elems, X.shape, X.domain)

    Mddm = M._rep.to_ddm()
    n = M.shape[0]
    if n == 0:
        return M.one
        # sympy/matrices/tests/test_matrices.py contains a test that
        # suggests that the determinant of a 0 x 0 matrix is one, by
        # convention.
    Fn1 = Mddm
    for _ in range(n - 1):
        Fn1 = mu(Fn1).matmul(Mddm)
    detA = Fn1[0][0]
    if n % 2 == 0:
        detA = -detA

    return Mddm.domain.to_sympy(detA)


def _minor(M, i, j, method="berkowitz"):
    """Return the (i,j) minor of ``M``.  That is,
    return the determinant of the matrix obtained by deleting
    the `i`th row and `j`th column from ``M``.

    Parameters
    ==========

    i, j : int
        The row and column to exclude to obtain the submatrix.

    method : string, optional
        Method to use to find the determinant of the submatrix, can be
        "bareiss", "berkowitz", "bird", "laplace" or "lu".

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> M.minor(1, 1)
    -12

    See Also
    ========

    minor_submatrix
    cofactor
    det
    """

    if not M.is_square:
        raise NonSquareMatrixError()

    return M.minor_submatrix(i, j).det(method=method)


def _minor_submatrix(M, i, j):
    """Return the submatrix obtained by removing the `i`th row
    and `j`th column from ``M`` (works with Pythonic negative indices).

    Parameters
    ==========

    i, j : int
        The row and column to exclude to obtain the submatrix.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> M.minor_submatrix(1, 1)
    Matrix([
    [1, 3],
    [7, 9]])

    See Also
    ========

    minor
    cofactor
    """

    if i < 0:
        i += M.rows
    if j < 0:
        j += M.cols

    if not 0 <= i < M.rows or not 0 <= j < M.cols:
        raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` "
                            "(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols)

    rows = [a for a in range(M.rows) if a != i]
    cols = [a for a in range(M.cols) if a != j]

    return M.extract(rows, cols)