File size: 39,811 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
from types import FunctionType
from collections import Counter

from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps

from sympy.core.sorting import default_sort_key
from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
from sympy.core.logic import fuzzy_and, fuzzy_or
from sympy.core.numbers import Float
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys import roots, CRootOf, ZZ, QQ, EX
from sympy.polys.matrices import DomainMatrix
from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
from sympy.polys.polytools import gcd

from .exceptions import MatrixError, NonSquareMatrixError
from .determinant import _find_reasonable_pivot

from .utilities import _iszero, _simplify


__doctest_requires__ = {
    ('_is_indefinite',
     '_is_negative_definite',
     '_is_negative_semidefinite',
     '_is_positive_definite',
     '_is_positive_semidefinite'): ['matplotlib'],
}


def _eigenvals_eigenvects_mpmath(M):
    norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))

    v1 = None
    prec = max(x._prec for x in M.atoms(Float))
    eps = 2**-prec

    while prec < DEFAULT_MAXPREC:
        with workprec(prec):
            A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
            E, ER = mp.eig(A)
            v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
            if v1 is not None and mp.fabs(v1 - v2) < eps:
                return E, ER
            v1 = v2
        prec *= 2

    # we get here because the next step would have taken us
    # past MAXPREC or because we never took a step; in case
    # of the latter, we refuse to send back a solution since
    # it would not have been verified; we also resist taking
    # a small step to arrive exactly at MAXPREC since then
    # the two calculations might be artificially close.
    raise PrecisionExhausted


def _eigenvals_mpmath(M, multiple=False):
    """Compute eigenvalues using mpmath"""
    E, _ = _eigenvals_eigenvects_mpmath(M)
    result = [_sympify(x) for x in E]
    if multiple:
        return result
    return dict(Counter(result))


def _eigenvects_mpmath(M):
    E, ER = _eigenvals_eigenvects_mpmath(M)
    result = []
    for i in range(M.rows):
        eigenval = _sympify(E[i])
        eigenvect = _sympify(ER[:, i])
        result.append((eigenval, 1, [eigenvect]))

    return result


# This function is a candidate for caching if it gets implemented for matrices.
def _eigenvals(
    M, error_when_incomplete=True, *, simplify=False, multiple=False,
    rational=False, **flags):
    r"""Compute eigenvalues of the matrix.

    Parameters
    ==========

    error_when_incomplete : bool, optional
        If it is set to ``True``, it will raise an error if not all
        eigenvalues are computed. This is caused by ``roots`` not returning
        a full list of eigenvalues.

    simplify : bool or function, optional
        If it is set to ``True``, it attempts to return the most
        simplified form of expressions returned by applying default
        simplification method in every routine.

        If it is set to ``False``, it will skip simplification in this
        particular routine to save computation resources.

        If a function is passed to, it will attempt to apply
        the particular function as simplification method.

    rational : bool, optional
        If it is set to ``True``, every floating point numbers would be
        replaced with rationals before computation. It can solve some
        issues of ``roots`` routine not working well with floats.

    multiple : bool, optional
        If it is set to ``True``, the result will be in the form of a
        list.

        If it is set to ``False``, the result will be in the form of a
        dictionary.

    Returns
    =======

    eigs : list or dict
        Eigenvalues of a matrix. The return format would be specified by
        the key ``multiple``.

    Raises
    ======

    MatrixError
        If not enough roots had got computed.

    NonSquareMatrixError
        If attempted to compute eigenvalues from a non-square matrix.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
    >>> M.eigenvals()
    {-1: 1, 0: 1, 2: 1}

    See Also
    ========

    MatrixBase.charpoly
    eigenvects

    Notes
    =====

    Eigenvalues of a matrix $A$ can be computed by solving a matrix
    equation $\det(A - \lambda I) = 0$

    It's not always possible to return radical solutions for
    eigenvalues for matrices larger than $4, 4$ shape due to
    Abel-Ruffini theorem.

    If there is no radical solution is found for the eigenvalue,
    it may return eigenvalues in the form of
    :class:`sympy.polys.rootoftools.ComplexRootOf`.
    """
    if not M:
        if multiple:
            return []
        return {}

    if not M.is_square:
        raise NonSquareMatrixError("{} must be a square matrix.".format(M))

    if M._rep.domain not in (ZZ, QQ):
        # Skip this check for ZZ/QQ because it can be slow
        if all(x.is_number for x in M) and M.has(Float):
            return _eigenvals_mpmath(M, multiple=multiple)

    if rational:
        from sympy.simplify import nsimplify
        M = M.applyfunc(
            lambda x: nsimplify(x, rational=True) if x.has(Float) else x)

    if multiple:
        return _eigenvals_list(
            M, error_when_incomplete=error_when_incomplete, simplify=simplify,
            **flags)
    return _eigenvals_dict(
        M, error_when_incomplete=error_when_incomplete, simplify=simplify,
        **flags)


eigenvals_error_message = \
"It is not always possible to express the eigenvalues of a matrix " + \
"of size 5x5 or higher in radicals. " + \
"We have CRootOf, but domains other than the rationals are not " + \
"currently supported. " + \
"If there are no symbols in the matrix, " + \
"it should still be possible to compute numeric approximations " + \
"of the eigenvalues using " + \
"M.evalf().eigenvals() or M.charpoly().nroots()."


def _eigenvals_list(
    M, error_when_incomplete=True, simplify=False, **flags):
    iblocks = M.strongly_connected_components()
    all_eigs = []
    is_dom = M._rep.domain in (ZZ, QQ)
    for b in iblocks:

        # Fast path for a 1x1 block:
        if is_dom and len(b) == 1:
            index = b[0]
            val = M[index, index]
            all_eigs.append(val)
            continue

        block = M[b, b]

        if isinstance(simplify, FunctionType):
            charpoly = block.charpoly(simplify=simplify)
        else:
            charpoly = block.charpoly()

        eigs = roots(charpoly, multiple=True, **flags)

        if len(eigs) != block.rows:
            try:
                eigs = charpoly.all_roots(multiple=True)
            except NotImplementedError:
                if error_when_incomplete:
                    raise MatrixError(eigenvals_error_message)
                else:
                    eigs = []

        all_eigs += eigs

    if not simplify:
        return all_eigs
    if not isinstance(simplify, FunctionType):
        simplify = _simplify
    return [simplify(value) for value in all_eigs]


def _eigenvals_dict(
    M, error_when_incomplete=True, simplify=False, **flags):
    iblocks = M.strongly_connected_components()
    all_eigs = {}
    is_dom = M._rep.domain in (ZZ, QQ)
    for b in iblocks:

        # Fast path for a 1x1 block:
        if is_dom and len(b) == 1:
            index = b[0]
            val = M[index, index]
            all_eigs[val] = all_eigs.get(val, 0) + 1
            continue

        block = M[b, b]

        if isinstance(simplify, FunctionType):
            charpoly = block.charpoly(simplify=simplify)
        else:
            charpoly = block.charpoly()

        eigs = roots(charpoly, multiple=False, **flags)

        if sum(eigs.values()) != block.rows:
            try:
                eigs = dict(charpoly.all_roots(multiple=False))
            except NotImplementedError:
                if error_when_incomplete:
                    raise MatrixError(eigenvals_error_message)
                else:
                    eigs = {}

        for k, v in eigs.items():
            if k in all_eigs:
                all_eigs[k] += v
            else:
                all_eigs[k] = v

    if not simplify:
        return all_eigs
    if not isinstance(simplify, FunctionType):
        simplify = _simplify
    return {simplify(key): value for key, value in all_eigs.items()}


def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
    """Get a basis for the eigenspace for a particular eigenvalue"""
    m   = M - M.eye(M.rows) * eigenval
    ret = m.nullspace(iszerofunc=iszerofunc)

    # The nullspace for a real eigenvalue should be non-trivial.
    # If we didn't find an eigenvector, try once more a little harder
    if len(ret) == 0 and simplify:
        ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
    if len(ret) == 0:
        raise NotImplementedError(
            "Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
    return ret


def _eigenvects_DOM(M, **kwargs):
    DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
    DOM = DOM.to_dense()

    if DOM.domain != EX:
        rational, algebraic = dom_eigenvects(DOM)
        eigenvects = dom_eigenvects_to_sympy(
            rational, algebraic, M.__class__, **kwargs)
        eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))

        return eigenvects
    return None


def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags):
    eigenvals = M.eigenvals(rational=False, **flags)

    # Make sure that we have all roots in radical form
    for x in eigenvals:
        if x.has(CRootOf):
            raise MatrixError(
                "Eigenvector computation is not implemented if the matrix have "
                "eigenvalues in CRootOf form")

    eigenvals = sorted(eigenvals.items(), key=default_sort_key)
    ret = []
    for val, mult in eigenvals:
        vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
        ret.append((val, mult, vects))
    return ret


# This functions is a candidate for caching if it gets implemented for matrices.
def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
    """Compute eigenvectors of the matrix.

    Parameters
    ==========

    error_when_incomplete : bool, optional
        Raise an error when not all eigenvalues are computed. This is
        caused by ``roots`` not returning a full list of eigenvalues.

    iszerofunc : function, optional
        Specifies a zero testing function to be used in ``rref``.

        Default value is ``_iszero``, which uses SymPy's naive and fast
        default assumption handler.

        It can also accept any user-specified zero testing function, if it
        is formatted as a function which accepts a single symbolic argument
        and returns ``True`` if it is tested as zero and ``False`` if it
        is tested as non-zero, and ``None`` if it is undecidable.

    simplify : bool or function, optional
        If ``True``, ``as_content_primitive()`` will be used to tidy up
        normalization artifacts.

        It will also be used by the ``nullspace`` routine.

    chop : bool or positive number, optional
        If the matrix contains any Floats, they will be changed to Rationals
        for computation purposes, but the answers will be returned after
        being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
        When ``chop=True`` a default precision will be used; a number will
        be interpreted as the desired level of precision.

    Returns
    =======

    ret : [(eigenval, multiplicity, eigenspace), ...]
        A ragged list containing tuples of data obtained by ``eigenvals``
        and ``nullspace``.

        ``eigenspace`` is a list containing the ``eigenvector`` for each
        eigenvalue.

        ``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
        a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.

    Raises
    ======

    NotImplementedError
        If failed to compute nullspace.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
    >>> M.eigenvects()
    [(-1, 1, [Matrix([
    [-1],
    [ 1],
    [ 0]])]), (0, 1, [Matrix([
    [ 0],
    [-1],
    [ 1]])]), (2, 1, [Matrix([
    [2/3],
    [1/3],
    [  1]])])]

    See Also
    ========

    eigenvals
    MatrixBase.nullspace
    """
    simplify = flags.get('simplify', True)
    primitive = flags.get('simplify', False)
    flags.pop('simplify', None)  # remove this if it's there
    flags.pop('multiple', None)  # remove this if it's there

    if not isinstance(simplify, FunctionType):
        simpfunc = _simplify if simplify else lambda x: x

    has_floats = M.has(Float)
    if has_floats:
        if all(x.is_number for x in M):
            return _eigenvects_mpmath(M)
        from sympy.simplify import nsimplify
        M = M.applyfunc(lambda x: nsimplify(x, rational=True))

    ret = _eigenvects_DOM(M)
    if ret is None:
        ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags)

    if primitive:
        # if the primitive flag is set, get rid of any common
        # integer denominators
        def denom_clean(l):
            return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]

        ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]

    if has_floats:
        # if we had floats to start with, turn the eigenvectors to floats
        ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
                for val, mult, es in ret]

    return ret


def _is_diagonalizable_with_eigen(M, reals_only=False):
    """See _is_diagonalizable. This function returns the bool along with the
    eigenvectors to avoid calculating them again in functions like
    ``diagonalize``."""

    if not M.is_square:
        return False, []

    eigenvecs = M.eigenvects(simplify=True)

    for val, mult, basis in eigenvecs:
        if reals_only and not val.is_real: # if we have a complex eigenvalue
            return False, eigenvecs

        if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
            return False, eigenvecs

    return True, eigenvecs

def _is_diagonalizable(M, reals_only=False, **kwargs):
    """Returns ``True`` if a matrix is diagonalizable.

    Parameters
    ==========

    reals_only : bool, optional
        If ``True``, it tests whether the matrix can be diagonalized
        to contain only real numbers on the diagonal.


        If ``False``, it tests whether the matrix can be diagonalized
        at all, even with numbers that may not be real.

    Examples
    ========

    Example of a diagonalizable matrix:

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
    >>> M.is_diagonalizable()
    True

    Example of a non-diagonalizable matrix:

    >>> M = Matrix([[0, 1], [0, 0]])
    >>> M.is_diagonalizable()
    False

    Example of a matrix that is diagonalized in terms of non-real entries:

    >>> M = Matrix([[0, 1], [-1, 0]])
    >>> M.is_diagonalizable(reals_only=False)
    True
    >>> M.is_diagonalizable(reals_only=True)
    False

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.is_diagonal
    diagonalize
    """
    if not M.is_square:
        return False

    if all(e.is_real for e in M) and M.is_symmetric():
        return True

    if all(e.is_complex for e in M) and M.is_hermitian:
        return True

    return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]


#G&VL, Matrix Computations, Algo 5.4.2
def _householder_vector(x):
    if not x.cols == 1:
        raise ValueError("Input must be a column matrix")
    v = x.copy()
    v_plus = x.copy()
    v_minus = x.copy()
    q = x[0, 0] / abs(x[0, 0])
    norm_x = x.norm()
    v_plus[0, 0] = x[0, 0] + q * norm_x
    v_minus[0, 0] = x[0, 0] - q * norm_x
    if x[1:, 0].norm() == 0:
        bet = 0
        v[0, 0] = 1
    else:
        if v_plus.norm() <= v_minus.norm():
            v = v_plus
        else:
            v = v_minus
        v = v / v[0]
        bet = 2 / (v.norm() ** 2)
    return v, bet


def _bidiagonal_decmp_hholder(M):
    m = M.rows
    n = M.cols
    A = M.as_mutable()
    U, V = A.eye(m), A.eye(n)
    for i in range(min(m, n)):
        v, bet = _householder_vector(A[i:, i])
        hh_mat = A.eye(m - i) - bet * v * v.H
        A[i:, i:] = hh_mat * A[i:, i:]
        temp = A.eye(m)
        temp[i:, i:] = hh_mat
        U = U * temp
        if i + 1 <= n - 2:
            v, bet = _householder_vector(A[i, i+1:].T)
            hh_mat = A.eye(n - i - 1) - bet * v * v.H
            A[i:, i+1:] = A[i:, i+1:] * hh_mat
            temp = A.eye(n)
            temp[i+1:, i+1:] = hh_mat
            V = temp * V
    return U, A, V


def _eval_bidiag_hholder(M):
    m = M.rows
    n = M.cols
    A = M.as_mutable()
    for i in range(min(m, n)):
        v, bet = _householder_vector(A[i:, i])
        hh_mat = A.eye(m-i) - bet * v * v.H
        A[i:, i:] = hh_mat * A[i:, i:]
        if i + 1 <= n - 2:
            v, bet = _householder_vector(A[i, i+1:].T)
            hh_mat = A.eye(n - i - 1) - bet * v * v.H
            A[i:, i+1:] = A[i:, i+1:] * hh_mat
    return A


def _bidiagonal_decomposition(M, upper=True):
    """
    Returns $(U,B,V.H)$ for

    $$A = UBV^{H}$$

    where $A$ is the input matrix, and $B$ is its Bidiagonalized form

    Note: Bidiagonal Computation can hang for symbolic matrices.

    Parameters
    ==========

    upper : bool. Whether to do upper bidiagnalization or lower.
                True for upper and False for lower.

    References
    ==========

    .. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
    .. [2] Complex Matrix Bidiagonalization, https://github.com/vslobody/Householder-Bidiagonalization

    """

    if not isinstance(upper, bool):
        raise ValueError("upper must be a boolean")

    if upper:
        return _bidiagonal_decmp_hholder(M)

    X = _bidiagonal_decmp_hholder(M.H)
    return X[2].H, X[1].H, X[0].H


def _bidiagonalize(M, upper=True):
    """
    Returns $B$, the Bidiagonalized form of the input matrix.

    Note: Bidiagonal Computation can hang for symbolic matrices.

    Parameters
    ==========

    upper : bool. Whether to do upper bidiagnalization or lower.
                True for upper and False for lower.

    References
    ==========

    .. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
    .. [2] Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization

    """

    if not isinstance(upper, bool):
        raise ValueError("upper must be a boolean")

    if upper:
        return _eval_bidiag_hholder(M)
    return _eval_bidiag_hholder(M.H).H


def _diagonalize(M, reals_only=False, sort=False, normalize=False):
    """
    Return (P, D), where D is diagonal and

        D = P^-1 * M * P

    where M is current matrix.

    Parameters
    ==========

    reals_only : bool. Whether to throw an error if complex numbers are need
                    to diagonalize. (Default: False)

    sort : bool. Sort the eigenvalues along the diagonal. (Default: False)

    normalize : bool. If True, normalize the columns of P. (Default: False)

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
    >>> M
    Matrix([
    [1,  2, 0],
    [0,  3, 0],
    [2, -4, 2]])
    >>> (P, D) = M.diagonalize()
    >>> D
    Matrix([
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]])
    >>> P
    Matrix([
    [-1, 0, -1],
    [ 0, 0, -1],
    [ 2, 1,  2]])
    >>> P.inv() * M * P
    Matrix([
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]])

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.is_diagonal
    is_diagonalizable
    """

    if not M.is_square:
        raise NonSquareMatrixError()

    is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
                reals_only=reals_only)

    if not is_diagonalizable:
        raise MatrixError("Matrix is not diagonalizable")

    if sort:
        eigenvecs = sorted(eigenvecs, key=default_sort_key)

    p_cols, diag = [], []

    for val, mult, basis in eigenvecs:
        diag   += [val] * mult
        p_cols += basis

    if normalize:
        p_cols = [v / v.norm() for v in p_cols]

    return M.hstack(*p_cols), M.diag(*diag)


def _fuzzy_positive_definite(M):
    positive_diagonals = M._has_positive_diagonals()
    if positive_diagonals is False:
        return False

    if positive_diagonals and M.is_strongly_diagonally_dominant:
        return True

    return None


def _fuzzy_positive_semidefinite(M):
    nonnegative_diagonals = M._has_nonnegative_diagonals()
    if nonnegative_diagonals is False:
        return False

    if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
        return True

    return None


def _is_positive_definite(M):
    if not M.is_hermitian:
        if not M.is_square:
            return False
        M = M + M.H

    fuzzy = _fuzzy_positive_definite(M)
    if fuzzy is not None:
        return fuzzy

    return _is_positive_definite_GE(M)


def _is_positive_semidefinite(M):
    if not M.is_hermitian:
        if not M.is_square:
            return False
        M = M + M.H

    fuzzy = _fuzzy_positive_semidefinite(M)
    if fuzzy is not None:
        return fuzzy

    return _is_positive_semidefinite_cholesky(M)


def _is_negative_definite(M):
    return _is_positive_definite(-M)


def _is_negative_semidefinite(M):
    return _is_positive_semidefinite(-M)


def _is_indefinite(M):
    if M.is_hermitian:
        eigen = M.eigenvals()
        args1        = [x.is_positive for x in eigen.keys()]
        any_positive = fuzzy_or(args1)
        args2        = [x.is_negative for x in eigen.keys()]
        any_negative = fuzzy_or(args2)

        return fuzzy_and([any_positive, any_negative])

    elif M.is_square:
        return (M + M.H).is_indefinite

    return False


def _is_positive_definite_GE(M):
    """A division-free gaussian elimination method for testing
    positive-definiteness."""
    M = M.as_mutable()
    size = M.rows

    for i in range(size):
        is_positive = M[i, i].is_positive
        if is_positive is not True:
            return is_positive
        for j in range(i+1, size):
            M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
    return True


def _is_positive_semidefinite_cholesky(M):
    """Uses Cholesky factorization with complete pivoting

    References
    ==========

    .. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf

    .. [2] https://www.value-at-risk.net/cholesky-factorization/
    """
    M = M.as_mutable()
    for k in range(M.rows):
        diags = [M[i, i] for i in range(k, M.rows)]
        pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)

        if nonzero:
            return None

        if pivot is None:
            for i in range(k+1, M.rows):
                for j in range(k, M.cols):
                    iszero = M[i, j].is_zero
                    if iszero is None:
                        return None
                    elif iszero is False:
                        return False
            return True

        if M[k, k].is_negative or pivot_val.is_negative:
            return False
        elif not (M[k, k].is_nonnegative and pivot_val.is_nonnegative):
            return None

        if pivot > 0:
            M.col_swap(k, k+pivot)
            M.row_swap(k, k+pivot)

        M[k, k] = sqrt(M[k, k])
        M[k, k+1:] /= M[k, k]
        M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]

    return M[-1, -1].is_nonnegative


_doc_positive_definite = \
    r"""Finds out the definiteness of a matrix.

    Explanation
    ===========

    A square real matrix $A$ is:

    - A positive definite matrix if $x^T A x > 0$
      for all non-zero real vectors $x$.
    - A positive semidefinite matrix if $x^T A x \geq 0$
      for all non-zero real vectors $x$.
    - A negative definite matrix if $x^T A x < 0$
      for all non-zero real vectors $x$.
    - A negative semidefinite matrix if $x^T A x \leq 0$
      for all non-zero real vectors $x$.
    - An indefinite matrix if there exists non-zero real vectors
      $x, y$ with $x^T A x > 0 > y^T A y$.

    A square complex matrix $A$ is:

    - A positive definite matrix if $\text{re}(x^H A x) > 0$
      for all non-zero complex vectors $x$.
    - A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
      for all non-zero complex vectors $x$.
    - A negative definite matrix if $\text{re}(x^H A x) < 0$
      for all non-zero complex vectors $x$.
    - A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
      for all non-zero complex vectors $x$.
    - An indefinite matrix if there exists non-zero complex vectors
      $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.

    A matrix need not be symmetric or hermitian to be positive definite.

    - A real non-symmetric matrix is positive definite if and only if
      $\frac{A + A^T}{2}$ is positive definite.
    - A complex non-hermitian matrix is positive definite if and only if
      $\frac{A + A^H}{2}$ is positive definite.

    And this extension can apply for all the definitions above.

    However, for complex cases, you can restrict the definition of
    $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
    to be hermitian.
    But we do not present this restriction for computation because you
    can check ``M.is_hermitian`` independently with this and use
    the same procedure.

    Examples
    ========

    An example of symmetric positive definite matrix:

    .. plot::
        :context: reset
        :format: doctest
        :include-source: True

        >>> from sympy import Matrix, symbols
        >>> from sympy.plotting import plot3d
        >>> a, b = symbols('a b')
        >>> x = Matrix([a, b])

        >>> A = Matrix([[1, 0], [0, 1]])
        >>> A.is_positive_definite
        True
        >>> A.is_positive_semidefinite
        True

        >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))

    An example of symmetric positive semidefinite matrix:

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> A = Matrix([[1, -1], [-1, 1]])
        >>> A.is_positive_definite
        False
        >>> A.is_positive_semidefinite
        True

        >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))

    An example of symmetric negative definite matrix:

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> A = Matrix([[-1, 0], [0, -1]])
        >>> A.is_negative_definite
        True
        >>> A.is_negative_semidefinite
        True
        >>> A.is_indefinite
        False

        >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))

    An example of symmetric indefinite matrix:

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> A = Matrix([[1, 2], [2, -1]])
        >>> A.is_indefinite
        True

        >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))

    An example of non-symmetric positive definite matrix.

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> A = Matrix([[1, 2], [-2, 1]])
        >>> A.is_positive_definite
        True
        >>> A.is_positive_semidefinite
        True

        >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))

    Notes
    =====

    Although some people trivialize the definition of positive definite
    matrices only for symmetric or hermitian matrices, this restriction
    is not correct because it does not classify all instances of
    positive definite matrices from the definition $x^T A x > 0$ or
    $\text{re}(x^H A x) > 0$.

    For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
    the example above is an example of real positive definite matrix
    that is not symmetric.

    However, since the following formula holds true;

    .. math::
        \text{re}(x^H A x) > 0 \iff
        \text{re}(x^H \frac{A + A^H}{2} x) > 0

    We can classify all positive definite matrices that may or may not
    be symmetric or hermitian by transforming the matrix to
    $\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
    (which is guaranteed to be always real symmetric or complex
    hermitian) and we can defer most of the studies to symmetric or
    hermitian positive definite matrices.

    But it is a different problem for the existence of Cholesky
    decomposition. Because even though a non symmetric or a non
    hermitian matrix can be positive definite, Cholesky or LDL
    decomposition does not exist because the decompositions require the
    matrix to be symmetric or hermitian.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues

    .. [2] https://mathworld.wolfram.com/PositiveDefiniteMatrix.html

    .. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
        Math. Monthly 77, 259-264 1970.
    """

_is_positive_definite.__doc__     = _doc_positive_definite
_is_positive_semidefinite.__doc__ = _doc_positive_definite
_is_negative_definite.__doc__     = _doc_positive_definite
_is_negative_semidefinite.__doc__ = _doc_positive_definite
_is_indefinite.__doc__            = _doc_positive_definite


def _jordan_form(M, calc_transform=True, *, chop=False):
    """Return $(P, J)$ where $J$ is a Jordan block
    matrix and $P$ is a matrix such that $M = P J P^{-1}$

    Parameters
    ==========

    calc_transform : bool
        If ``False``, then only $J$ is returned.

    chop : bool
        All matrices are converted to exact types when computing
        eigenvalues and eigenvectors.  As a result, there may be
        approximation errors.  If ``chop==True``, these errors
        will be truncated.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[ 6,  5, -2, -3], [-3, -1,  3,  3], [ 2,  1, -2, -3], [-1,  1,  5,  5]])
    >>> P, J = M.jordan_form()
    >>> J
    Matrix([
    [2, 1, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 2, 1],
    [0, 0, 0, 2]])

    See Also
    ========

    jordan_block
    """

    if not M.is_square:
        raise NonSquareMatrixError("Only square matrices have Jordan forms")

    mat        = M
    has_floats = M.has(Float)

    if has_floats:
        try:
            max_prec = max(term._prec for term in M.values() if isinstance(term, Float))
        except ValueError:
            # if no term in the matrix is explicitly a Float calling max()
            # will throw a error so setting max_prec to default value of 53
            max_prec = 53

        # setting minimum max_dps to 15 to prevent loss of precision in
        # matrix containing non evaluated expressions
        max_dps = max(prec_to_dps(max_prec), 15)

    def restore_floats(*args):
        """If ``has_floats`` is `True`, cast all ``args`` as
        matrices of floats."""

        if has_floats:
            args = [m.evalf(n=max_dps, chop=chop) for m in args]
        if len(args) == 1:
            return args[0]

        return args

    # cache calculations for some speedup
    mat_cache = {}

    def eig_mat(val, pow):
        """Cache computations of ``(M - val*I)**pow`` for quick
        retrieval"""

        if (val, pow) in mat_cache:
            return mat_cache[(val, pow)]

        if (val, pow - 1) in mat_cache:
            mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
                    mat_cache[(val, 1)], dotprodsimp=None)
        else:
            mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)

        return mat_cache[(val, pow)]

    # helper functions
    def nullity_chain(val, algebraic_multiplicity):
        """Calculate the sequence  [0, nullity(E), nullity(E**2), ...]
        until it is constant where ``E = M - val*I``"""

        # mat.rank() is faster than computing the null space,
        # so use the rank-nullity theorem
        cols    = M.cols
        ret     = [0]
        nullity = cols - eig_mat(val, 1).rank()
        i       = 2

        while nullity != ret[-1]:
            ret.append(nullity)

            if nullity == algebraic_multiplicity:
                break

            nullity  = cols - eig_mat(val, i).rank()
            i       += 1

            # Due to issues like #7146 and #15872, SymPy sometimes
            # gives the wrong rank. In this case, raise an error
            # instead of returning an incorrect matrix
            if nullity < ret[-1] or nullity > algebraic_multiplicity:
                raise MatrixError(
                    "SymPy had encountered an inconsistent "
                    "result while computing Jordan block: "
                    "{}".format(M))

        return ret

    def blocks_from_nullity_chain(d):
        """Return a list of the size of each Jordan block.
        If d_n is the nullity of E**n, then the number
        of Jordan blocks of size n is

            2*d_n - d_(n-1) - d_(n+1)"""

        # d[0] is always the number of columns, so skip past it
        mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
        # d is assumed to plateau with "d[ len(d) ] == d[-1]", so
        # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
        end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]

        return mid + end

    def pick_vec(small_basis, big_basis):
        """Picks a vector from big_basis that isn't in
        the subspace spanned by small_basis"""

        if len(small_basis) == 0:
            return big_basis[0]

        for v in big_basis:
            _, pivots = M.hstack(*(small_basis + [v])).echelon_form(
                    with_pivots=True)

            if pivots[-1] == len(small_basis):
                return v

    # roots doesn't like Floats, so replace them with Rationals
    if has_floats:
        from sympy.simplify import nsimplify
        mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))

    # first calculate the jordan block structure
    eigs = mat.eigenvals()

    # Make sure that we have all roots in radical form
    for x in eigs:
        if x.has(CRootOf):
            raise MatrixError(
                "Jordan normal form is not implemented if the matrix have "
                "eigenvalues in CRootOf form")

    # most matrices have distinct eigenvalues
    # and so are diagonalizable.  In this case, don't
    # do extra work!
    if len(eigs.keys()) == mat.cols:
        blocks     = sorted(eigs.keys(), key=default_sort_key)
        jordan_mat = mat.diag(*blocks)

        if not calc_transform:
            return restore_floats(jordan_mat)

        jordan_basis = [eig_mat(eig, 1).nullspace()[0]
                for eig in blocks]
        basis_mat    = mat.hstack(*jordan_basis)

        return restore_floats(basis_mat, jordan_mat)

    block_structure = []

    for eig in sorted(eigs.keys(), key=default_sort_key):
        algebraic_multiplicity = eigs[eig]
        chain = nullity_chain(eig, algebraic_multiplicity)
        block_sizes = blocks_from_nullity_chain(chain)

        # if block_sizes =       = [a, b, c, ...], then the number of
        # Jordan blocks of size 1 is a, of size 2 is b, etc.
        # create an array that has (eig, block_size) with one
        # entry for each block
        size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]

        # we expect larger Jordan blocks to come earlier
        size_nums.reverse()

        block_structure.extend(
            [(eig, size) for size, num in size_nums for _ in range(num)])

    jordan_form_size = sum(size for eig, size in block_structure)

    if jordan_form_size != M.rows:
        raise MatrixError(
            "SymPy had encountered an inconsistent result while "
            "computing Jordan block. : {}".format(M))

    blocks     = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
    jordan_mat = mat.diag(*blocks)

    if not calc_transform:
        return restore_floats(jordan_mat)

    # For each generalized eigenspace, calculate a basis.
    # We start by looking for a vector in null( (A - eig*I)**n )
    # which isn't in null( (A - eig*I)**(n-1) ) where n is
    # the size of the Jordan block
    #
    # Ideally we'd just loop through block_structure and
    # compute each generalized eigenspace.  However, this
    # causes a lot of unneeded computation.  Instead, we
    # go through the eigenvalues separately, since we know
    # their generalized eigenspaces must have bases that
    # are linearly independent.
    jordan_basis = []

    for eig in sorted(eigs.keys(), key=default_sort_key):
        eig_basis = []

        for block_eig, size in block_structure:
            if block_eig != eig:
                continue

            null_big   = (eig_mat(eig, size)).nullspace()
            null_small = (eig_mat(eig, size - 1)).nullspace()

            # we want to pick something that is in the big basis
            # and not the small, but also something that is independent
            # of any other generalized eigenvectors from a different
            # generalized eigenspace sharing the same eigenvalue.
            vec      = pick_vec(null_small + eig_basis, null_big)
            new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
                    for i in range(size)]

            eig_basis.extend(new_vecs)
            jordan_basis.extend(reversed(new_vecs))

    basis_mat = mat.hstack(*jordan_basis)

    return restore_floats(basis_mat, jordan_mat)


def _left_eigenvects(M, **flags):
    """Returns left eigenvectors and eigenvalues.

    This function returns the list of triples (eigenval, multiplicity,
    basis) for the left eigenvectors. Options are the same as for
    eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
    eigenvects().

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
    >>> M.eigenvects()
    [(-1, 1, [Matrix([
    [-1],
    [ 1],
    [ 0]])]), (0, 1, [Matrix([
    [ 0],
    [-1],
    [ 1]])]), (2, 1, [Matrix([
    [2/3],
    [1/3],
    [  1]])])]
    >>> M.left_eigenvects()
    [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
    1, [Matrix([[1, 1, 1]])])]

    """

    eigs = M.transpose().eigenvects(**flags)

    return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]


def _singular_values(M):
    """Compute the singular values of a Matrix

    Examples
    ========

    >>> from sympy import Matrix, Symbol
    >>> x = Symbol('x', real=True)
    >>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
    >>> M.singular_values()
    [sqrt(x**2 + 1), 1, 0]

    See Also
    ========

    condition_number
    """

    if M.rows >= M.cols:
        valmultpairs = M.H.multiply(M).eigenvals()
    else:
        valmultpairs = M.multiply(M.H).eigenvals()

    # Expands result from eigenvals into a simple list
    vals = []

    for k, v in valmultpairs.items():
        vals += [sqrt(k)] * v  # dangerous! same k in several spots!

    # Pad with zeros if singular values are computed in reverse way,
    # to give consistent format.
    if len(vals) < M.cols:
        vals += [M.zero] * (M.cols - len(vals))

    # sort them in descending order
    vals.sort(reverse=True, key=default_sort_key)

    return vals