Spaces:
Sleeping
Sleeping
File size: 8,050 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
from sympy.core import S
from sympy.core.sympify import _sympify
from sympy.functions import KroneckerDelta
from .matexpr import MatrixExpr
from .special import ZeroMatrix, Identity, OneMatrix
class PermutationMatrix(MatrixExpr):
"""A Permutation Matrix
Parameters
==========
perm : Permutation
The permutation the matrix uses.
The size of the permutation determines the matrix size.
See the documentation of
:class:`sympy.combinatorics.permutations.Permutation` for
the further information of how to create a permutation object.
Examples
========
>>> from sympy import Matrix, PermutationMatrix
>>> from sympy.combinatorics import Permutation
Creating a permutation matrix:
>>> p = Permutation(1, 2, 0)
>>> P = PermutationMatrix(p)
>>> P = P.as_explicit()
>>> P
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Permuting a matrix row and column:
>>> M = Matrix([0, 1, 2])
>>> Matrix(P*M)
Matrix([
[1],
[2],
[0]])
>>> Matrix(M.T*P)
Matrix([[2, 0, 1]])
See Also
========
sympy.combinatorics.permutations.Permutation
"""
def __new__(cls, perm):
from sympy.combinatorics.permutations import Permutation
perm = _sympify(perm)
if not isinstance(perm, Permutation):
raise ValueError(
"{} must be a SymPy Permutation instance.".format(perm))
return super().__new__(cls, perm)
@property
def shape(self):
size = self.args[0].size
return (size, size)
@property
def is_Identity(self):
return self.args[0].is_Identity
def doit(self, **hints):
if self.is_Identity:
return Identity(self.rows)
return self
def _entry(self, i, j, **kwargs):
perm = self.args[0]
return KroneckerDelta(perm.apply(i), j)
def _eval_power(self, exp):
return PermutationMatrix(self.args[0] ** exp).doit()
def _eval_inverse(self):
return PermutationMatrix(self.args[0] ** -1)
_eval_transpose = _eval_adjoint = _eval_inverse
def _eval_determinant(self):
sign = self.args[0].signature()
if sign == 1:
return S.One
elif sign == -1:
return S.NegativeOne
raise NotImplementedError
def _eval_rewrite_as_BlockDiagMatrix(self, *args, **kwargs):
from sympy.combinatorics.permutations import Permutation
from .blockmatrix import BlockDiagMatrix
perm = self.args[0]
full_cyclic_form = perm.full_cyclic_form
cycles_picks = []
# Stage 1. Decompose the cycles into the blockable form.
a, b, c = 0, 0, 0
flag = False
for cycle in full_cyclic_form:
l = len(cycle)
m = max(cycle)
if not flag:
if m + 1 > a + l:
flag = True
temp = [cycle]
b = m
c = l
else:
cycles_picks.append([cycle])
a += l
else:
if m > b:
if m + 1 == a + c + l:
temp.append(cycle)
cycles_picks.append(temp)
flag = False
a = m+1
else:
b = m
temp.append(cycle)
c += l
else:
if b + 1 == a + c + l:
temp.append(cycle)
cycles_picks.append(temp)
flag = False
a = b+1
else:
temp.append(cycle)
c += l
# Stage 2. Normalize each decomposed cycles and build matrix.
p = 0
args = []
for pick in cycles_picks:
new_cycles = []
l = 0
for cycle in pick:
new_cycle = [i - p for i in cycle]
new_cycles.append(new_cycle)
l += len(cycle)
p += l
perm = Permutation(new_cycles)
mat = PermutationMatrix(perm)
args.append(mat)
return BlockDiagMatrix(*args)
class MatrixPermute(MatrixExpr):
r"""Symbolic representation for permuting matrix rows or columns.
Parameters
==========
perm : Permutation, PermutationMatrix
The permutation to use for permuting the matrix.
The permutation can be resized to the suitable one,
axis : 0 or 1
The axis to permute alongside.
If `0`, it will permute the matrix rows.
If `1`, it will permute the matrix columns.
Notes
=====
This follows the same notation used in
:meth:`sympy.matrices.matrixbase.MatrixBase.permute`.
Examples
========
>>> from sympy import Matrix, MatrixPermute
>>> from sympy.combinatorics import Permutation
Permuting the matrix rows:
>>> p = Permutation(1, 2, 0)
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> B = MatrixPermute(A, p, axis=0)
>>> B.as_explicit()
Matrix([
[4, 5, 6],
[7, 8, 9],
[1, 2, 3]])
Permuting the matrix columns:
>>> B = MatrixPermute(A, p, axis=1)
>>> B.as_explicit()
Matrix([
[2, 3, 1],
[5, 6, 4],
[8, 9, 7]])
See Also
========
sympy.matrices.matrixbase.MatrixBase.permute
"""
def __new__(cls, mat, perm, axis=S.Zero):
from sympy.combinatorics.permutations import Permutation
mat = _sympify(mat)
if not mat.is_Matrix:
raise ValueError(
"{} must be a SymPy matrix instance.".format(perm))
perm = _sympify(perm)
if isinstance(perm, PermutationMatrix):
perm = perm.args[0]
if not isinstance(perm, Permutation):
raise ValueError(
"{} must be a SymPy Permutation or a PermutationMatrix " \
"instance".format(perm))
axis = _sympify(axis)
if axis not in (0, 1):
raise ValueError("The axis must be 0 or 1.")
mat_size = mat.shape[axis]
if mat_size != perm.size:
try:
perm = perm.resize(mat_size)
except ValueError:
raise ValueError(
"Size does not match between the permutation {} "
"and the matrix {} threaded over the axis {} "
"and cannot be converted."
.format(perm, mat, axis))
return super().__new__(cls, mat, perm, axis)
def doit(self, deep=True, **hints):
mat, perm, axis = self.args
if deep:
mat = mat.doit(deep=deep, **hints)
perm = perm.doit(deep=deep, **hints)
if perm.is_Identity:
return mat
if mat.is_Identity:
if axis is S.Zero:
return PermutationMatrix(perm)
elif axis is S.One:
return PermutationMatrix(perm**-1)
if isinstance(mat, (ZeroMatrix, OneMatrix)):
return mat
if isinstance(mat, MatrixPermute) and mat.args[2] == axis:
return MatrixPermute(mat.args[0], perm * mat.args[1], axis)
return self
@property
def shape(self):
return self.args[0].shape
def _entry(self, i, j, **kwargs):
mat, perm, axis = self.args
if axis == 0:
return mat[perm.apply(i), j]
elif axis == 1:
return mat[i, perm.apply(j)]
def _eval_rewrite_as_MatMul(self, *args, **kwargs):
from .matmul import MatMul
mat, perm, axis = self.args
deep = kwargs.get("deep", True)
if deep:
mat = mat.rewrite(MatMul)
if axis == 0:
return MatMul(PermutationMatrix(perm), mat)
elif axis == 1:
return MatMul(mat, PermutationMatrix(perm**-1))
|