File size: 7,499 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from sympy.assumptions.ask import ask, Q
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.exceptions import NonInvertibleMatrixError
from .matexpr import MatrixExpr


class ZeroMatrix(MatrixExpr):
    """The Matrix Zero 0 - additive identity

    Examples
    ========

    >>> from sympy import MatrixSymbol, ZeroMatrix
    >>> A = MatrixSymbol('A', 3, 5)
    >>> Z = ZeroMatrix(3, 5)
    >>> A + Z
    A
    >>> Z*A.T
    0
    """
    is_ZeroMatrix = True

    def __new__(cls, m, n):
        m, n = _sympify(m), _sympify(n)
        cls._check_dim(m)
        cls._check_dim(n)

        return super().__new__(cls, m, n)

    @property
    def shape(self):
        return (self.args[0], self.args[1])

    def _eval_power(self, exp):
        # exp = -1, 0, 1 are already handled at this stage
        if (exp < 0) == True:
            raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
        return self

    def _eval_transpose(self):
        return ZeroMatrix(self.cols, self.rows)

    def _eval_adjoint(self):
        return ZeroMatrix(self.cols, self.rows)

    def _eval_trace(self):
        return S.Zero

    def _eval_determinant(self):
        return S.Zero

    def _eval_inverse(self):
        raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")

    def _eval_as_real_imag(self):
        return (self, self)

    def _eval_conjugate(self):
        return self

    def _entry(self, i, j, **kwargs):
        return S.Zero


class GenericZeroMatrix(ZeroMatrix):
    """
    A zero matrix without a specified shape

    This exists primarily so MatAdd() with no arguments can return something
    meaningful.
    """
    def __new__(cls):
        # super(ZeroMatrix, cls) instead of super(GenericZeroMatrix, cls)
        # because ZeroMatrix.__new__ doesn't have the same signature
        return super(ZeroMatrix, cls).__new__(cls)

    @property
    def rows(self):
        raise TypeError("GenericZeroMatrix does not have a specified shape")

    @property
    def cols(self):
        raise TypeError("GenericZeroMatrix does not have a specified shape")

    @property
    def shape(self):
        raise TypeError("GenericZeroMatrix does not have a specified shape")

    # Avoid Matrix.__eq__ which might call .shape
    def __eq__(self, other):
        return isinstance(other, GenericZeroMatrix)

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self):
        return super().__hash__()



class Identity(MatrixExpr):
    """The Matrix Identity I - multiplicative identity

    Examples
    ========

    >>> from sympy import Identity, MatrixSymbol
    >>> A = MatrixSymbol('A', 3, 5)
    >>> I = Identity(3)
    >>> I*A
    A
    """

    is_Identity = True

    def __new__(cls, n):
        n = _sympify(n)
        cls._check_dim(n)

        return super().__new__(cls, n)

    @property
    def rows(self):
        return self.args[0]

    @property
    def cols(self):
        return self.args[0]

    @property
    def shape(self):
        return (self.args[0], self.args[0])

    @property
    def is_square(self):
        return True

    def _eval_transpose(self):
        return self

    def _eval_trace(self):
        return self.rows

    def _eval_inverse(self):
        return self

    def _eval_as_real_imag(self):
        return (self, ZeroMatrix(*self.shape))

    def _eval_conjugate(self):
        return self

    def _eval_adjoint(self):
        return self

    def _entry(self, i, j, **kwargs):
        eq = Eq(i, j)
        if eq is S.true:
            return S.One
        elif eq is S.false:
            return S.Zero
        return KroneckerDelta(i, j, (0, self.cols-1))

    def _eval_determinant(self):
        return S.One

    def _eval_power(self, exp):
        return self


class GenericIdentity(Identity):
    """
    An identity matrix without a specified shape

    This exists primarily so MatMul() with no arguments can return something
    meaningful.
    """
    def __new__(cls):
        # super(Identity, cls) instead of super(GenericIdentity, cls) because
        # Identity.__new__ doesn't have the same signature
        return super(Identity, cls).__new__(cls)

    @property
    def rows(self):
        raise TypeError("GenericIdentity does not have a specified shape")

    @property
    def cols(self):
        raise TypeError("GenericIdentity does not have a specified shape")

    @property
    def shape(self):
        raise TypeError("GenericIdentity does not have a specified shape")

    @property
    def is_square(self):
        return True

    # Avoid Matrix.__eq__ which might call .shape
    def __eq__(self, other):
        return isinstance(other, GenericIdentity)

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self):
        return super().__hash__()


class OneMatrix(MatrixExpr):
    """
    Matrix whose all entries are ones.
    """
    def __new__(cls, m, n, evaluate=False):
        m, n = _sympify(m), _sympify(n)
        cls._check_dim(m)
        cls._check_dim(n)

        if evaluate:
            condition = Eq(m, 1) & Eq(n, 1)
            if condition == True:
                return Identity(1)

        obj = super().__new__(cls, m, n)
        return obj

    @property
    def shape(self):
        return self._args

    @property
    def is_Identity(self):
        return self._is_1x1() == True

    def as_explicit(self):
        from sympy.matrices.immutable import ImmutableDenseMatrix
        return ImmutableDenseMatrix.ones(*self.shape)

    def doit(self, **hints):
        args = self.args
        if hints.get('deep', True):
            args = [a.doit(**hints) for a in args]
        return self.func(*args, evaluate=True)

    def _eval_power(self, exp):
        # exp = -1, 0, 1 are already handled at this stage
        if self._is_1x1() == True:
            return Identity(1)
        if (exp < 0) == True:
            raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
        if ask(Q.integer(exp)):
            return self.shape[0] ** (exp - 1) * OneMatrix(*self.shape)
        return super()._eval_power(exp)

    def _eval_transpose(self):
        return OneMatrix(self.cols, self.rows)

    def _eval_adjoint(self):
        return OneMatrix(self.cols, self.rows)

    def _eval_trace(self):
        return S.One*self.rows

    def _is_1x1(self):
        """Returns true if the matrix is known to be 1x1"""
        shape = self.shape
        return Eq(shape[0], 1) & Eq(shape[1], 1)

    def _eval_determinant(self):
        condition = self._is_1x1()
        if condition == True:
            return S.One
        elif condition == False:
            return S.Zero
        else:
            from sympy.matrices.expressions.determinant import Determinant
            return Determinant(self)

    def _eval_inverse(self):
        condition = self._is_1x1()
        if condition == True:
            return Identity(1)
        elif condition == False:
            raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
        else:
            from .inverse import Inverse
            return Inverse(self)

    def _eval_as_real_imag(self):
        return (self, ZeroMatrix(*self.shape))

    def _eval_conjugate(self):
        return self

    def _entry(self, i, j, **kwargs):
        return S.One