File size: 5,362 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from sympy.core.basic import Basic
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.matrices.matrixbase import MatrixBase
from sympy.matrices.exceptions import NonSquareMatrixError


class Trace(Expr):
    """Matrix Trace

    Represents the trace of a matrix expression.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Trace, eye
    >>> A = MatrixSymbol('A', 3, 3)
    >>> Trace(A)
    Trace(A)
    >>> Trace(eye(3))
    Trace(Matrix([
    [1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]]))
    >>> Trace(eye(3)).simplify()
    3
    """
    is_Trace = True
    is_commutative = True

    def __new__(cls, mat):
        mat = sympify(mat)

        if not mat.is_Matrix:
            raise TypeError("input to Trace, %s, is not a matrix" % str(mat))

        if mat.is_square is False:
            raise NonSquareMatrixError("Trace of a non-square matrix")

        return Basic.__new__(cls, mat)

    def _eval_transpose(self):
        return self

    def _eval_derivative(self, v):
        from sympy.concrete.summations import Sum
        from .matexpr import MatrixElement
        if isinstance(v, MatrixElement):
            return self.rewrite(Sum).diff(v)
        expr = self.doit()
        if isinstance(expr, Trace):
            # Avoid looping infinitely:
            raise NotImplementedError
        return expr._eval_derivative(v)

    def _eval_derivative_matrix_lines(self, x):
        from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction
        r = self.args[0]._eval_derivative_matrix_lines(x)
        for lr in r:
            if lr.higher == 1:
                lr.higher = ExprBuilder(
                    ArrayContraction,
                    [
                        ExprBuilder(
                            ArrayTensorProduct,
                            [
                                lr._lines[0],
                                lr._lines[1],
                            ]
                        ),
                        (1, 3),
                    ],
                    validator=ArrayContraction._validate
                )
            else:
                # This is not a matrix line:
                lr.higher = ExprBuilder(
                    ArrayContraction,
                    [
                        ExprBuilder(
                            ArrayTensorProduct,
                            [
                                lr._lines[0],
                                lr._lines[1],
                                lr.higher,
                            ]
                        ),
                        (1, 3), (0, 2)
                    ]
                )
            lr._lines = [S.One, S.One]
            lr._first_pointer_parent = lr._lines
            lr._second_pointer_parent = lr._lines
            lr._first_pointer_index = 0
            lr._second_pointer_index = 1
        return r

    @property
    def arg(self):
        return self.args[0]

    def doit(self, **hints):
        if hints.get('deep', True):
            arg = self.arg.doit(**hints)
            result = arg._eval_trace()
            if result is not None:
                return result
            else:
                return Trace(arg)
        else:
            # _eval_trace would go too deep here
            if isinstance(self.arg, MatrixBase):
                return trace(self.arg)
            else:
                return Trace(self.arg)

    def as_explicit(self):
        return Trace(self.arg.as_explicit()).doit()

    def _normalize(self):
        # Normalization of trace of matrix products. Use transposition and
        # cyclic properties of traces to make sure the arguments of the matrix
        # product are sorted and the first argument is not a transposition.
        from sympy.matrices.expressions.matmul import MatMul
        from sympy.matrices.expressions.transpose import Transpose
        trace_arg = self.arg
        if isinstance(trace_arg, MatMul):

            def get_arg_key(x):
                a = trace_arg.args[x]
                if isinstance(a, Transpose):
                    a = a.arg
                return default_sort_key(a)

            indmin = min(range(len(trace_arg.args)), key=get_arg_key)
            if isinstance(trace_arg.args[indmin], Transpose):
                trace_arg = Transpose(trace_arg).doit()
                indmin = min(range(len(trace_arg.args)), key=lambda x: default_sort_key(trace_arg.args[x]))
            trace_arg = MatMul.fromiter(trace_arg.args[indmin:] + trace_arg.args[:indmin])
            return Trace(trace_arg)
        return self

    def _eval_rewrite_as_Sum(self, expr, **kwargs):
        from sympy.concrete.summations import Sum
        i = uniquely_named_symbol('i', [expr])
        s = Sum(self.arg[i, i], (i, 0, self.arg.rows - 1))
        return s.doit()


def trace(expr):
    """Trace of a Matrix.  Sum of the diagonal elements.

    Examples
    ========

    >>> from sympy import trace, Symbol, MatrixSymbol, eye
    >>> n = Symbol('n')
    >>> X = MatrixSymbol('X', n, n)  # A square matrix
    >>> trace(2*X)
    2*Trace(X)
    >>> trace(eye(3))
    3
    """
    return Trace(expr).doit()