File size: 3,808 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''Functions returning normal forms of matrices'''

from sympy.polys.domains.integerring import ZZ
from sympy.polys.polytools import Poly
from sympy.polys.matrices import DomainMatrix
from sympy.polys.matrices.normalforms import (
        smith_normal_form as _snf,
        invariant_factors as _invf,
        hermite_normal_form as _hnf,
    )


def _to_domain(m, domain=None):
    """Convert Matrix to DomainMatrix"""
    # XXX: deprecated support for RawMatrix:
    ring = getattr(m, "ring", None)
    m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e)

    dM = DomainMatrix.from_Matrix(m)

    domain = domain or ring
    if domain is not None:
        dM = dM.convert_to(domain)
    return dM


def smith_normal_form(m, domain=None):
    '''
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy import Matrix, ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(smith_normal_form(m, domain=ZZ))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    '''
    dM = _to_domain(m, domain)
    return _snf(dM).to_Matrix()


def invariant_factors(m, domain=None):
    '''
    Return the tuple of abelian invariants for a matrix `m`
    (as in the Smith-Normal form)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
    .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf

    '''
    dM = _to_domain(m, domain)
    factors = _invf(dM)
    factors = tuple(dM.domain.to_sympy(f) for f in factors)
    # XXX: deprecated.
    if hasattr(m, "ring"):
        if m.ring.is_PolynomialRing:
            K = m.ring
            to_poly = lambda f: Poly(f, K.symbols, domain=K.domain)
            factors = tuple(to_poly(f) for f in factors)
    return factors


def hermite_normal_form(A, *, D=None, check_rank=False):
    r"""
    Compute the Hermite Normal Form of a Matrix *A* of integers.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.matrices.normalforms import hermite_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(hermite_normal_form(m))
    Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])

    Parameters
    ==========

    A : $m \times n$ ``Matrix`` of integers.

    D : int, optional
        Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
        being any multiple of $\det(W)$ may be provided. In this case, if *A*
        also has rank $m$, then we may use an alternative algorithm that works
        mod *D* in order to prevent coefficient explosion.

    check_rank : boolean, optional (default=False)
        The basic assumption is that, if you pass a value for *D*, then
        you already believe that *A* has rank $m$, so we do not waste time
        checking it for you. If you do want this to be checked (and the
        ordinary, non-modulo *D* algorithm to be used if the check fails), then
        set *check_rank* to ``True``.

    Returns
    =======

    ``Matrix``
        The HNF of matrix *A*.

    Raises
    ======

    DMDomainError
        If the domain of the matrix is not :ref:`ZZ`.

    DMShapeError
        If the mod *D* algorithm is used but the matrix has more rows than
        columns.

    References
    ==========

    .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
       (See Algorithms 2.4.5 and 2.4.8.)

    """
    # Accept any of Python int, SymPy Integer, and ZZ itself:
    if D is not None and not ZZ.of_type(D):
        D = ZZ(int(D))
    return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()