Spaces:
Sleeping
Sleeping
File size: 14,673 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
from collections.abc import Callable
from sympy.core.containers import Dict
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import is_sequence
from sympy.utilities.misc import as_int
from .matrixbase import MatrixBase
from .repmatrix import MutableRepMatrix, RepMatrix
from .utilities import _iszero
from .decompositions import (
_liupc, _row_structure_symbolic_cholesky, _cholesky_sparse,
_LDLdecomposition_sparse)
from .solvers import (
_lower_triangular_solve_sparse, _upper_triangular_solve_sparse)
class SparseRepMatrix(RepMatrix):
"""
A sparse matrix (a matrix with a large number of zero elements).
Examples
========
>>> from sympy import SparseMatrix, ones
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
A SparseMatrix can be instantiated from a ragged list of lists:
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]])
Matrix([
[1, 2, 3],
[1, 2, 0],
[1, 0, 0]])
For safety, one may include the expected size and then an error
will be raised if the indices of any element are out of range or
(for a flat list) if the total number of elements does not match
the expected shape:
>>> SparseMatrix(2, 2, [1, 2])
Traceback (most recent call last):
...
ValueError: List length (2) != rows*columns (4)
Here, an error is not raised because the list is not flat and no
element is out of range:
>>> SparseMatrix(2, 2, [[1, 2]])
Matrix([
[1, 2],
[0, 0]])
But adding another element to the first (and only) row will cause
an error to be raised:
>>> SparseMatrix(2, 2, [[1, 2, 3]])
Traceback (most recent call last):
...
ValueError: The location (0, 2) is out of designated range: (1, 1)
To autosize the matrix, pass None for rows:
>>> SparseMatrix(None, [[1, 2, 3]])
Matrix([[1, 2, 3]])
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3})
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 3]])
Values that are themselves a Matrix are automatically expanded:
>>> SparseMatrix(4, 4, {(1, 1): ones(2)})
Matrix([
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 0]])
A ValueError is raised if the expanding matrix tries to overwrite
a different element already present:
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
See Also
========
DenseMatrix
MutableSparseMatrix
ImmutableSparseMatrix
"""
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], MatrixBase):
rows = args[0].rows
cols = args[0].cols
smat = args[0].todok()
return rows, cols, smat
smat = {}
# autosizing
if len(args) == 2 and args[0] is None:
args = [None, None, args[1]]
if len(args) == 3:
r, c = args[:2]
if r is c is None:
rows = cols = None
elif None in (r, c):
raise ValueError(
'Pass rows=None and no cols for autosizing.')
else:
rows, cols = as_int(args[0]), as_int(args[1])
if isinstance(args[2], Callable):
op = args[2]
if None in (rows, cols):
raise ValueError(
"{} and {} must be integers for this "
"specification.".format(rows, cols))
row_indices = [cls._sympify(i) for i in range(rows)]
col_indices = [cls._sympify(j) for j in range(cols)]
for i in row_indices:
for j in col_indices:
value = cls._sympify(op(i, j))
if value != cls.zero:
smat[i, j] = value
return rows, cols, smat
elif isinstance(args[2], (dict, Dict)):
def update(i, j, v):
# update smat and make sure there are no collisions
if v:
if (i, j) in smat and v != smat[i, j]:
raise ValueError(
"There is a collision at {} for {} and {}."
.format((i, j), v, smat[i, j])
)
smat[i, j] = v
# manual copy, copy.deepcopy() doesn't work
for (r, c), v in args[2].items():
if isinstance(v, MatrixBase):
for (i, j), vv in v.todok().items():
update(r + i, c + j, vv)
elif isinstance(v, (list, tuple)):
_, _, smat = cls._handle_creation_inputs(v, **kwargs)
for i, j in smat:
update(r + i, c + j, smat[i, j])
else:
v = cls._sympify(v)
update(r, c, cls._sympify(v))
elif is_sequence(args[2]):
flat = not any(is_sequence(i) for i in args[2])
if not flat:
_, _, smat = \
cls._handle_creation_inputs(args[2], **kwargs)
else:
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
"The length of the flat list ({}) does not "
"match the specified size ({} * {})."
.format(len(flat_list), rows, cols)
)
for i in range(rows):
for j in range(cols):
value = flat_list[i*cols + j]
value = cls._sympify(value)
if value != cls.zero:
smat[i, j] = value
if rows is None: # autosizing
keys = smat.keys()
rows = max(r for r, _ in keys) + 1 if keys else 0
cols = max(c for _, c in keys) + 1 if keys else 0
else:
for i, j in smat.keys():
if i and i >= rows or j and j >= cols:
raise ValueError(
"The location {} is out of the designated range"
"[{}, {}]x[{}, {}]"
.format((i, j), 0, rows - 1, 0, cols - 1)
)
return rows, cols, smat
elif len(args) == 1 and isinstance(args[0], (list, tuple)):
# list of values or lists
v = args[0]
c = 0
for i, row in enumerate(v):
if not isinstance(row, (list, tuple)):
row = [row]
for j, vv in enumerate(row):
if vv != cls.zero:
smat[i, j] = cls._sympify(vv)
c = max(c, len(row))
rows = len(v) if c else 0
cols = c
return rows, cols, smat
else:
# handle full matrix forms with _handle_creation_inputs
rows, cols, mat = super()._handle_creation_inputs(*args)
for i in range(rows):
for j in range(cols):
value = mat[cols*i + j]
if value != cls.zero:
smat[i, j] = value
return rows, cols, smat
@property
def _smat(self):
sympy_deprecation_warning(
"""
The private _smat attribute of SparseMatrix is deprecated. Use the
.todok() method instead.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-private-matrix-attributes"
)
return self.todok()
def _eval_inverse(self, **kwargs):
return self.inv(method=kwargs.get('method', 'LDL'),
iszerofunc=kwargs.get('iszerofunc', _iszero),
try_block_diag=kwargs.get('try_block_diag', False))
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import SparseMatrix
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
# XXX: This only applies the function to the nonzero elements of the
# matrix so is inconsistent with DenseMatrix.applyfunc e.g.
# zeros(2, 2).applyfunc(lambda x: x + 1)
dok = {}
for k, v in self.todok().items():
fv = f(v)
if fv != 0:
dok[k] = fv
return self._new(self.rows, self.cols, dok)
def as_immutable(self):
"""Returns an Immutable version of this Matrix."""
from .immutable import ImmutableSparseMatrix
return ImmutableSparseMatrix(self)
def as_mutable(self):
"""Returns a mutable version of this matrix.
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return MutableSparseMatrix(self)
def col_list(self):
"""Returns a column-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy import SparseMatrix
>>> a=SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.SparseMatrix.row_list
"""
return [tuple(k + (self[k],)) for k in sorted(self.todok().keys(), key=lambda k: list(reversed(k)))]
def nnz(self):
"""Returns the number of non-zero elements in Matrix."""
return len(self.todok())
def row_list(self):
"""Returns a row-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.SparseMatrix.col_list
"""
return [tuple(k + (self[k],)) for k in
sorted(self.todok().keys(), key=list)]
def scalar_multiply(self, scalar):
"Scalar element-wise multiplication"
return scalar * self
def solve_least_squares(self, rhs, method='LDL'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy import SparseMatrix, Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
t = self.T
return (t*self).inv(method=method)*t*rhs
def solve(self, rhs, method='LDL'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system.')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method).multiply(rhs)
RL = property(row_list, None, None, "Alternate faster representation")
CL = property(col_list, None, None, "Alternate faster representation")
def liupc(self):
return _liupc(self)
def row_structure_symbolic_cholesky(self):
return _row_structure_symbolic_cholesky(self)
def cholesky(self, hermitian=True):
return _cholesky_sparse(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True):
return _LDLdecomposition_sparse(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs):
return _lower_triangular_solve_sparse(self, rhs)
def upper_triangular_solve(self, rhs):
return _upper_triangular_solve_sparse(self, rhs)
liupc.__doc__ = _liupc.__doc__
row_structure_symbolic_cholesky.__doc__ = _row_structure_symbolic_cholesky.__doc__
cholesky.__doc__ = _cholesky_sparse.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition_sparse.__doc__
lower_triangular_solve.__doc__ = lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = upper_triangular_solve.__doc__
class MutableSparseMatrix(SparseRepMatrix, MutableRepMatrix):
@classmethod
def _new(cls, *args, **kwargs):
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs)
rep = cls._smat_to_DomainMatrix(rows, cols, smat)
return cls._fromrep(rep)
SparseMatrix = MutableSparseMatrix
|