File size: 14,809 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
""" The module contains implemented functions for interval arithmetic."""
from functools import reduce

from sympy.plotting.intervalmath import interval
from sympy.external import import_module


def Abs(x):
    if isinstance(x, (int, float)):
        return interval(abs(x))
    elif isinstance(x, interval):
        if x.start < 0 and x.end > 0:
            return interval(0, max(abs(x.start), abs(x.end)), is_valid=x.is_valid)
        else:
            return interval(abs(x.start), abs(x.end))
    else:
        raise NotImplementedError

#Monotonic


def exp(x):
    """evaluates the exponential of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.exp(x), np.exp(x))
    elif isinstance(x, interval):
        return interval(np.exp(x.start), np.exp(x.end), is_valid=x.is_valid)
    else:
        raise NotImplementedError


#Monotonic
def log(x):
    """evaluates the natural logarithm of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        if x <= 0:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.log(x))
    elif isinstance(x, interval):
        if not x.is_valid:
            return interval(-np.inf, np.inf, is_valid=x.is_valid)
        elif x.end <= 0:
            return interval(-np.inf, np.inf, is_valid=False)
        elif x.start <= 0:
            return interval(-np.inf, np.inf, is_valid=None)

        return interval(np.log(x.start), np.log(x.end))
    else:
        raise NotImplementedError


#Monotonic
def log10(x):
    """evaluates the logarithm to the base 10 of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        if x <= 0:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.log10(x))
    elif isinstance(x, interval):
        if not x.is_valid:
            return interval(-np.inf, np.inf, is_valid=x.is_valid)
        elif x.end <= 0:
            return interval(-np.inf, np.inf, is_valid=False)
        elif x.start <= 0:
            return interval(-np.inf, np.inf, is_valid=None)
        return interval(np.log10(x.start), np.log10(x.end))
    else:
        raise NotImplementedError


#Monotonic
def atan(x):
    """evaluates the tan inverse of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.arctan(x))
    elif isinstance(x, interval):
        start = np.arctan(x.start)
        end = np.arctan(x.end)
        return interval(start, end, is_valid=x.is_valid)
    else:
        raise NotImplementedError


#periodic
def sin(x):
    """evaluates the sine of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.sin(x))
    elif isinstance(x, interval):
        if not x.is_valid:
            return interval(-1, 1, is_valid=x.is_valid)
        na, __ = divmod(x.start, np.pi / 2.0)
        nb, __ = divmod(x.end, np.pi / 2.0)
        start = min(np.sin(x.start), np.sin(x.end))
        end = max(np.sin(x.start), np.sin(x.end))
        if nb - na > 4:
            return interval(-1, 1, is_valid=x.is_valid)
        elif na == nb:
            return interval(start, end, is_valid=x.is_valid)
        else:
            if (na - 1) // 4 != (nb - 1) // 4:
                #sin has max
                end = 1
            if (na - 3) // 4 != (nb - 3) // 4:
                #sin has min
                start = -1
            return interval(start, end)
    else:
        raise NotImplementedError


#periodic
def cos(x):
    """Evaluates the cos of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.sin(x))
    elif isinstance(x, interval):
        if not (np.isfinite(x.start) and np.isfinite(x.end)):
            return interval(-1, 1, is_valid=x.is_valid)
        na, __ = divmod(x.start, np.pi / 2.0)
        nb, __ = divmod(x.end, np.pi / 2.0)
        start = min(np.cos(x.start), np.cos(x.end))
        end = max(np.cos(x.start), np.cos(x.end))
        if nb - na > 4:
            #differ more than 2*pi
            return interval(-1, 1, is_valid=x.is_valid)
        elif na == nb:
            #in the same quadarant
            return interval(start, end, is_valid=x.is_valid)
        else:
            if (na) // 4 != (nb) // 4:
                #cos has max
                end = 1
            if (na - 2) // 4 != (nb - 2) // 4:
                #cos has min
                start = -1
            return interval(start, end, is_valid=x.is_valid)
    else:
        raise NotImplementedError


def tan(x):
    """Evaluates the tan of an interval"""
    return sin(x) / cos(x)


#Monotonic
def sqrt(x):
    """Evaluates the square root of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        if x > 0:
            return interval(np.sqrt(x))
        else:
            return interval(-np.inf, np.inf, is_valid=False)
    elif isinstance(x, interval):
        #Outside the domain
        if x.end < 0:
            return interval(-np.inf, np.inf, is_valid=False)
        #Partially outside the domain
        elif x.start < 0:
            return interval(-np.inf, np.inf, is_valid=None)
        else:
            return interval(np.sqrt(x.start), np.sqrt(x.end),
                    is_valid=x.is_valid)
    else:
        raise NotImplementedError


def imin(*args):
    """Evaluates the minimum of a list of intervals"""
    np = import_module('numpy')
    if not all(isinstance(arg, (int, float, interval)) for arg in args):
        return NotImplementedError
    else:
        new_args = [a for a in args if isinstance(a, (int, float))
                    or a.is_valid]
        if len(new_args) == 0:
            if all(a.is_valid is False for a in args):
                return interval(-np.inf, np.inf, is_valid=False)
            else:
                return interval(-np.inf, np.inf, is_valid=None)
        start_array = [a if isinstance(a, (int, float)) else a.start
                       for a in new_args]

        end_array = [a if isinstance(a, (int, float)) else a.end
                     for a in new_args]
        return interval(min(start_array), min(end_array))


def imax(*args):
    """Evaluates the maximum of a list of intervals"""
    np = import_module('numpy')
    if not all(isinstance(arg, (int, float, interval)) for arg in args):
        return NotImplementedError
    else:
        new_args = [a for a in args if isinstance(a, (int, float))
                    or a.is_valid]
        if len(new_args) == 0:
            if all(a.is_valid is False for a in args):
                return interval(-np.inf, np.inf, is_valid=False)
            else:
                return interval(-np.inf, np.inf, is_valid=None)
        start_array = [a if isinstance(a, (int, float)) else a.start
                       for a in new_args]

        end_array = [a if isinstance(a, (int, float)) else a.end
                     for a in new_args]

        return interval(max(start_array), max(end_array))


#Monotonic
def sinh(x):
    """Evaluates the hyperbolic sine of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.sinh(x), np.sinh(x))
    elif isinstance(x, interval):
        return interval(np.sinh(x.start), np.sinh(x.end), is_valid=x.is_valid)
    else:
        raise NotImplementedError


def cosh(x):
    """Evaluates the hyperbolic cos of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.cosh(x), np.cosh(x))
    elif isinstance(x, interval):
        #both signs
        if x.start < 0 and x.end > 0:
            end = max(np.cosh(x.start), np.cosh(x.end))
            return interval(1, end, is_valid=x.is_valid)
        else:
            #Monotonic
            start = np.cosh(x.start)
            end = np.cosh(x.end)
            return interval(start, end, is_valid=x.is_valid)
    else:
        raise NotImplementedError


#Monotonic
def tanh(x):
    """Evaluates the hyperbolic tan of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.tanh(x), np.tanh(x))
    elif isinstance(x, interval):
        return interval(np.tanh(x.start), np.tanh(x.end), is_valid=x.is_valid)
    else:
        raise NotImplementedError


def asin(x):
    """Evaluates the inverse sine of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        #Outside the domain
        if abs(x) > 1:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.arcsin(x), np.arcsin(x))
    elif isinstance(x, interval):
        #Outside the domain
        if x.is_valid is False or x.start > 1 or x.end < -1:
            return interval(-np.inf, np.inf, is_valid=False)
        #Partially outside the domain
        elif x.start < -1 or x.end > 1:
            return interval(-np.inf, np.inf, is_valid=None)
        else:
            start = np.arcsin(x.start)
            end = np.arcsin(x.end)
            return interval(start, end, is_valid=x.is_valid)


def acos(x):
    """Evaluates the inverse cos of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        if abs(x) > 1:
            #Outside the domain
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.arccos(x), np.arccos(x))
    elif isinstance(x, interval):
        #Outside the domain
        if x.is_valid is False or x.start > 1 or x.end < -1:
            return interval(-np.inf, np.inf, is_valid=False)
        #Partially outside the domain
        elif x.start < -1 or x.end > 1:
            return interval(-np.inf, np.inf, is_valid=None)
        else:
            start = np.arccos(x.start)
            end = np.arccos(x.end)
            return interval(start, end, is_valid=x.is_valid)


def ceil(x):
    """Evaluates the ceiling of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.ceil(x))
    elif isinstance(x, interval):
        if x.is_valid is False:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            start = np.ceil(x.start)
            end = np.ceil(x.end)
            #Continuous over the interval
            if start == end:
                return interval(start, end, is_valid=x.is_valid)
            else:
                #Not continuous over the interval
                return interval(start, end, is_valid=None)
    else:
        return NotImplementedError


def floor(x):
    """Evaluates the floor of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.floor(x))
    elif isinstance(x, interval):
        if x.is_valid is False:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            start = np.floor(x.start)
            end = np.floor(x.end)
            #continuous over the argument
            if start == end:
                return interval(start, end, is_valid=x.is_valid)
            else:
                #not continuous over the interval
                return interval(start, end, is_valid=None)
    else:
        return NotImplementedError


def acosh(x):
    """Evaluates the inverse hyperbolic cosine of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        #Outside the domain
        if x < 1:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.arccosh(x))
    elif isinstance(x, interval):
        #Outside the domain
        if x.end < 1:
            return interval(-np.inf, np.inf, is_valid=False)
        #Partly outside the domain
        elif x.start < 1:
            return interval(-np.inf, np.inf, is_valid=None)
        else:
            start = np.arccosh(x.start)
            end = np.arccosh(x.end)
            return interval(start, end, is_valid=x.is_valid)
    else:
        return NotImplementedError


#Monotonic
def asinh(x):
    """Evaluates the inverse hyperbolic sine of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        return interval(np.arcsinh(x))
    elif isinstance(x, interval):
        start = np.arcsinh(x.start)
        end = np.arcsinh(x.end)
        return interval(start, end, is_valid=x.is_valid)
    else:
        return NotImplementedError


def atanh(x):
    """Evaluates the inverse hyperbolic tangent of an interval"""
    np = import_module('numpy')
    if isinstance(x, (int, float)):
        #Outside the domain
        if abs(x) >= 1:
            return interval(-np.inf, np.inf, is_valid=False)
        else:
            return interval(np.arctanh(x))
    elif isinstance(x, interval):
        #outside the domain
        if x.is_valid is False or x.start >= 1 or x.end <= -1:
            return interval(-np.inf, np.inf, is_valid=False)
        #partly outside the domain
        elif x.start <= -1 or x.end >= 1:
            return interval(-np.inf, np.inf, is_valid=None)
        else:
            start = np.arctanh(x.start)
            end = np.arctanh(x.end)
            return interval(start, end, is_valid=x.is_valid)
    else:
        return NotImplementedError


#Three valued logic for interval plotting.

def And(*args):
    """Defines the three valued ``And`` behaviour for a 2-tuple of
     three valued logic values"""
    def reduce_and(cmp_intervala, cmp_intervalb):
        if cmp_intervala[0] is False or cmp_intervalb[0] is False:
            first = False
        elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
            first = None
        else:
            first = True
        if cmp_intervala[1] is False or cmp_intervalb[1] is False:
            second = False
        elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
            second = None
        else:
            second = True
        return (first, second)
    return reduce(reduce_and, args)


def Or(*args):
    """Defines the three valued ``Or`` behaviour for a 2-tuple of
     three valued logic values"""
    def reduce_or(cmp_intervala, cmp_intervalb):
        if cmp_intervala[0] is True or cmp_intervalb[0] is True:
            first = True
        elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
            first = None
        else:
            first = False

        if cmp_intervala[1] is True or cmp_intervalb[1] is True:
            second = True
        elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
            second = None
        else:
            second = False
        return (first, second)
    return reduce(reduce_or, args)