File size: 5,352 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from sympy.utilities.lambdify import lambdify
from sympy.core.numbers import pi
from sympy.functions import sin, cos
from sympy.plotting.pygletplot.plot_curve import PlotCurve
from sympy.plotting.pygletplot.plot_surface import PlotSurface

from math import sin as p_sin
from math import cos as p_cos


def float_vec3(f):
    def inner(*args):
        v = f(*args)
        return float(v[0]), float(v[1]), float(v[2])
    return inner


class Cartesian2D(PlotCurve):
    i_vars, d_vars = 'x', 'y'
    intervals = [[-5, 5, 100]]
    aliases = ['cartesian']
    is_default = True

    def _get_sympy_evaluator(self):
        fy = self.d_vars[0]
        x = self.t_interval.v

        @float_vec3
        def e(_x):
            return (_x, fy.subs(x, _x), 0.0)
        return e

    def _get_lambda_evaluator(self):
        fy = self.d_vars[0]
        x = self.t_interval.v
        return lambdify([x], [x, fy, 0.0])


class Cartesian3D(PlotSurface):
    i_vars, d_vars = 'xy', 'z'
    intervals = [[-1, 1, 40], [-1, 1, 40]]
    aliases = ['cartesian', 'monge']
    is_default = True

    def _get_sympy_evaluator(self):
        fz = self.d_vars[0]
        x = self.u_interval.v
        y = self.v_interval.v

        @float_vec3
        def e(_x, _y):
            return (_x, _y, fz.subs(x, _x).subs(y, _y))
        return e

    def _get_lambda_evaluator(self):
        fz = self.d_vars[0]
        x = self.u_interval.v
        y = self.v_interval.v
        return lambdify([x, y], [x, y, fz])


class ParametricCurve2D(PlotCurve):
    i_vars, d_vars = 't', 'xy'
    intervals = [[0, 2*pi, 100]]
    aliases = ['parametric']
    is_default = True

    def _get_sympy_evaluator(self):
        fx, fy = self.d_vars
        t = self.t_interval.v

        @float_vec3
        def e(_t):
            return (fx.subs(t, _t), fy.subs(t, _t), 0.0)
        return e

    def _get_lambda_evaluator(self):
        fx, fy = self.d_vars
        t = self.t_interval.v
        return lambdify([t], [fx, fy, 0.0])


class ParametricCurve3D(PlotCurve):
    i_vars, d_vars = 't', 'xyz'
    intervals = [[0, 2*pi, 100]]
    aliases = ['parametric']
    is_default = True

    def _get_sympy_evaluator(self):
        fx, fy, fz = self.d_vars
        t = self.t_interval.v

        @float_vec3
        def e(_t):
            return (fx.subs(t, _t), fy.subs(t, _t), fz.subs(t, _t))
        return e

    def _get_lambda_evaluator(self):
        fx, fy, fz = self.d_vars
        t = self.t_interval.v
        return lambdify([t], [fx, fy, fz])


class ParametricSurface(PlotSurface):
    i_vars, d_vars = 'uv', 'xyz'
    intervals = [[-1, 1, 40], [-1, 1, 40]]
    aliases = ['parametric']
    is_default = True

    def _get_sympy_evaluator(self):
        fx, fy, fz = self.d_vars
        u = self.u_interval.v
        v = self.v_interval.v

        @float_vec3
        def e(_u, _v):
            return (fx.subs(u, _u).subs(v, _v),
                    fy.subs(u, _u).subs(v, _v),
                    fz.subs(u, _u).subs(v, _v))
        return e

    def _get_lambda_evaluator(self):
        fx, fy, fz = self.d_vars
        u = self.u_interval.v
        v = self.v_interval.v
        return lambdify([u, v], [fx, fy, fz])


class Polar(PlotCurve):
    i_vars, d_vars = 't', 'r'
    intervals = [[0, 2*pi, 100]]
    aliases = ['polar']
    is_default = False

    def _get_sympy_evaluator(self):
        fr = self.d_vars[0]
        t = self.t_interval.v

        def e(_t):
            _r = float(fr.subs(t, _t))
            return (_r*p_cos(_t), _r*p_sin(_t), 0.0)
        return e

    def _get_lambda_evaluator(self):
        fr = self.d_vars[0]
        t = self.t_interval.v
        fx, fy = fr*cos(t), fr*sin(t)
        return lambdify([t], [fx, fy, 0.0])


class Cylindrical(PlotSurface):
    i_vars, d_vars = 'th', 'r'
    intervals = [[0, 2*pi, 40], [-1, 1, 20]]
    aliases = ['cylindrical', 'polar']
    is_default = False

    def _get_sympy_evaluator(self):
        fr = self.d_vars[0]
        t = self.u_interval.v
        h = self.v_interval.v

        def e(_t, _h):
            _r = float(fr.subs(t, _t).subs(h, _h))
            return (_r*p_cos(_t), _r*p_sin(_t), _h)
        return e

    def _get_lambda_evaluator(self):
        fr = self.d_vars[0]
        t = self.u_interval.v
        h = self.v_interval.v
        fx, fy = fr*cos(t), fr*sin(t)
        return lambdify([t, h], [fx, fy, h])


class Spherical(PlotSurface):
    i_vars, d_vars = 'tp', 'r'
    intervals = [[0, 2*pi, 40], [0, pi, 20]]
    aliases = ['spherical']
    is_default = False

    def _get_sympy_evaluator(self):
        fr = self.d_vars[0]
        t = self.u_interval.v
        p = self.v_interval.v

        def e(_t, _p):
            _r = float(fr.subs(t, _t).subs(p, _p))
            return (_r*p_cos(_t)*p_sin(_p),
                    _r*p_sin(_t)*p_sin(_p),
                    _r*p_cos(_p))
        return e

    def _get_lambda_evaluator(self):
        fr = self.d_vars[0]
        t = self.u_interval.v
        p = self.v_interval.v
        fx = fr * cos(t) * sin(p)
        fy = fr * sin(t) * sin(p)
        fz = fr * cos(p)
        return lambdify([t, p], [fx, fy, fz])

Cartesian2D._register()
Cartesian3D._register()
ParametricCurve2D._register()
ParametricCurve3D._register()
ParametricSurface._register()
Polar._register()
Cylindrical._register()
Spherical._register()