Spaces:
Sleeping
Sleeping
File size: 19,983 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
from sympy.core import S
from sympy.core.function import Lambda
from sympy.core.power import Pow
from .pycode import PythonCodePrinter, _known_functions_math, _print_known_const, _print_known_func, _unpack_integral_limits, ArrayPrinter
from .codeprinter import CodePrinter
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
_known_functions_numpy = dict(_in_numpy, **{
'acos': 'arccos',
'acosh': 'arccosh',
'asin': 'arcsin',
'asinh': 'arcsinh',
'atan': 'arctan',
'atan2': 'arctan2',
'atanh': 'arctanh',
'exp2': 'exp2',
'sign': 'sign',
'logaddexp': 'logaddexp',
'logaddexp2': 'logaddexp2',
'isnan': 'isnan'
})
_known_constants_numpy = {
'Exp1': 'e',
'Pi': 'pi',
'EulerGamma': 'euler_gamma',
'NaN': 'nan',
'Infinity': 'inf',
}
_numpy_known_functions = {k: 'numpy.' + v for k, v in _known_functions_numpy.items()}
_numpy_known_constants = {k: 'numpy.' + v for k, v in _known_constants_numpy.items()}
class NumPyPrinter(ArrayPrinter, PythonCodePrinter):
"""
Numpy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'numpy'
_kf = _numpy_known_functions
_kc = _numpy_known_constants
def __init__(self, settings=None):
"""
`settings` is passed to CodePrinter.__init__()
`module` specifies the array module to use, currently 'NumPy', 'CuPy'
or 'JAX'.
"""
self.language = "Python with {}".format(self._module)
self.printmethod = "_{}code".format(self._module)
self._kf = {**PythonCodePrinter._kf, **self._kf}
super().__init__(settings=settings)
def _print_seq(self, seq):
"General sequence printer: converts to tuple"
# Print tuples here instead of lists because numba supports
# tuples in nopython mode.
delimiter=', '
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
def _print_NegativeInfinity(self, expr):
return '-' + self._print(S.Infinity)
def _print_MatMul(self, expr):
"Matrix multiplication printer"
if expr.as_coeff_matrices()[0] is not S.One:
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
return '({})'.format(').dot('.join(self._print(i) for i in expr_list))
return '({})'.format(').dot('.join(self._print(i) for i in expr.args))
def _print_MatPow(self, expr):
"Matrix power printer"
return '{}({}, {})'.format(self._module_format(self._module + '.linalg.matrix_power'),
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Inverse(self, expr):
"Matrix inverse printer"
return '{}({})'.format(self._module_format(self._module + '.linalg.inv'),
self._print(expr.args[0]))
def _print_DotProduct(self, expr):
# DotProduct allows any shape order, but numpy.dot does matrix
# multiplication, so we have to make sure it gets 1 x n by n x 1.
arg1, arg2 = expr.args
if arg1.shape[0] != 1:
arg1 = arg1.T
if arg2.shape[1] != 1:
arg2 = arg2.T
return "%s(%s, %s)" % (self._module_format(self._module + '.dot'),
self._print(arg1),
self._print(arg2))
def _print_MatrixSolve(self, expr):
return "%s(%s, %s)" % (self._module_format(self._module + '.linalg.solve'),
self._print(expr.matrix),
self._print(expr.vector))
def _print_ZeroMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.zeros'),
self._print(expr.shape))
def _print_OneMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.ones'),
self._print(expr.shape))
def _print_FunctionMatrix(self, expr):
from sympy.abc import i, j
lamda = expr.lamda
if not isinstance(lamda, Lambda):
lamda = Lambda((i, j), lamda(i, j))
return '{}(lambda {}: {}, {})'.format(self._module_format(self._module + '.fromfunction'),
', '.join(self._print(arg) for arg in lamda.args[0]),
self._print(lamda.args[1]), self._print(expr.shape))
def _print_HadamardProduct(self, expr):
func = self._module_format(self._module + '.multiply')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_KroneckerProduct(self, expr):
func = self._module_format(self._module + '.kron')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_Adjoint(self, expr):
return '{}({}({}))'.format(
self._module_format(self._module + '.conjugate'),
self._module_format(self._module + '.transpose'),
self._print(expr.args[0]))
def _print_DiagonalOf(self, expr):
vect = '{}({})'.format(
self._module_format(self._module + '.diag'),
self._print(expr.arg))
return '{}({}, (-1, 1))'.format(
self._module_format(self._module + '.reshape'), vect)
def _print_DiagMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.diagflat'),
self._print(expr.args[0]))
def _print_DiagonalMatrix(self, expr):
return '{}({}, {}({}, {}))'.format(self._module_format(self._module + '.multiply'),
self._print(expr.arg), self._module_format(self._module + '.eye'),
self._print(expr.shape[0]), self._print(expr.shape[1]))
def _print_Piecewise(self, expr):
"Piecewise function printer"
from sympy.logic.boolalg import ITE, simplify_logic
def print_cond(cond):
""" Problem having an ITE in the cond. """
if cond.has(ITE):
return self._print(simplify_logic(cond))
else:
return self._print(cond)
exprs = '[{}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
conds = '[{}]'.format(','.join(print_cond(arg.cond) for arg in expr.args))
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
return '{}({}, {}, default={})'.format(
self._module_format(self._module + '.select'), conds, exprs,
self._print(S.NaN))
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '{op}({lhs}, {rhs})'.format(op=self._module_format(self._module + '.'+op[expr.rel_op]),
lhs=lhs, rhs=rhs)
return super()._print_Relational(expr)
def _print_And(self, expr):
"Logical And printer"
# We have to override LambdaPrinter because it uses Python 'and' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_and'), ','.join(self._print(i) for i in expr.args))
def _print_Or(self, expr):
"Logical Or printer"
# We have to override LambdaPrinter because it uses Python 'or' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_or'), ','.join(self._print(i) for i in expr.args))
def _print_Not(self, expr):
"Logical Not printer"
# We have to override LambdaPrinter because it uses Python 'not' keyword.
# If LambdaPrinter didn't define it, we would still have to define our
# own because StrPrinter doesn't define it.
return '{}({})'.format(self._module_format(self._module + '.logical_not'), ','.join(self._print(i) for i in expr.args))
def _print_Pow(self, expr, rational=False):
# XXX Workaround for negative integer power error
if expr.exp.is_integer and expr.exp.is_negative:
expr = Pow(expr.base, expr.exp.evalf(), evaluate=False)
return self._hprint_Pow(expr, rational=rational, sqrt=self._module + '.sqrt')
def _print_Min(self, expr):
return '{}({}.asarray([{}]), axis=0)'.format(self._module_format(self._module + '.amin'), self._module_format(self._module), ','.join(self._print(i) for i in expr.args))
def _print_Max(self, expr):
return '{}({}.asarray([{}]), axis=0)'.format(self._module_format(self._module + '.amax'), self._module_format(self._module), ','.join(self._print(i) for i in expr.args))
def _print_arg(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.angle'), self._print(expr.args[0]))
def _print_im(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.imag'), self._print(expr.args[0]))
def _print_Mod(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.mod'), ', '.join(
(self._print(arg) for arg in expr.args)))
def _print_re(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.real'), self._print(expr.args[0]))
def _print_sinc(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.sinc'), self._print(expr.args[0]/S.Pi))
def _print_MatrixBase(self, expr):
func = self.known_functions.get(expr.__class__.__name__, None)
if func is None:
func = self._module_format(self._module + '.array')
return "%s(%s)" % (func, self._print(expr.tolist()))
def _print_Identity(self, expr):
shape = expr.shape
if all(dim.is_Integer for dim in shape):
return "%s(%s)" % (self._module_format(self._module + '.eye'), self._print(expr.shape[0]))
else:
raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices")
def _print_BlockMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.block'),
self._print(expr.args[0].tolist()))
def _print_NDimArray(self, expr):
if len(expr.shape) == 1:
return self._module + '.array(' + self._print(expr.args[0]) + ')'
if len(expr.shape) == 2:
return self._print(expr.tomatrix())
# Should be possible to extend to more dimensions
return super()._print_not_supported(self, expr)
_add = "add"
_einsum = "einsum"
_transpose = "transpose"
_ones = "ones"
_zeros = "zeros"
_print_lowergamma = CodePrinter._print_not_supported
_print_uppergamma = CodePrinter._print_not_supported
_print_fresnelc = CodePrinter._print_not_supported
_print_fresnels = CodePrinter._print_not_supported
for func in _numpy_known_functions:
setattr(NumPyPrinter, f'_print_{func}', _print_known_func)
for const in _numpy_known_constants:
setattr(NumPyPrinter, f'_print_{const}', _print_known_const)
_known_functions_scipy_special = {
'Ei': 'expi',
'erf': 'erf',
'erfc': 'erfc',
'besselj': 'jv',
'bessely': 'yv',
'besseli': 'iv',
'besselk': 'kv',
'cosm1': 'cosm1',
'powm1': 'powm1',
'factorial': 'factorial',
'gamma': 'gamma',
'loggamma': 'gammaln',
'digamma': 'psi',
'polygamma': 'polygamma',
'RisingFactorial': 'poch',
'jacobi': 'eval_jacobi',
'gegenbauer': 'eval_gegenbauer',
'chebyshevt': 'eval_chebyt',
'chebyshevu': 'eval_chebyu',
'legendre': 'eval_legendre',
'hermite': 'eval_hermite',
'laguerre': 'eval_laguerre',
'assoc_laguerre': 'eval_genlaguerre',
'beta': 'beta',
'LambertW' : 'lambertw',
}
_known_constants_scipy_constants = {
'GoldenRatio': 'golden_ratio',
'Pi': 'pi',
}
_scipy_known_functions = {k : "scipy.special." + v for k, v in _known_functions_scipy_special.items()}
_scipy_known_constants = {k : "scipy.constants." + v for k, v in _known_constants_scipy_constants.items()}
class SciPyPrinter(NumPyPrinter):
_kf = {**NumPyPrinter._kf, **_scipy_known_functions}
_kc = {**NumPyPrinter._kc, **_scipy_known_constants}
def __init__(self, settings=None):
super().__init__(settings=settings)
self.language = "Python with SciPy and NumPy"
def _print_SparseRepMatrix(self, expr):
i, j, data = [], [], []
for (r, c), v in expr.todok().items():
i.append(r)
j.append(c)
data.append(v)
return "{name}(({data}, ({i}, {j})), shape={shape})".format(
name=self._module_format('scipy.sparse.coo_matrix'),
data=data, i=i, j=j, shape=expr.shape
)
_print_ImmutableSparseMatrix = _print_SparseRepMatrix
# SciPy's lpmv has a different order of arguments from assoc_legendre
def _print_assoc_legendre(self, expr):
return "{0}({2}, {1}, {3})".format(
self._module_format('scipy.special.lpmv'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]))
def _print_lowergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammainc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_uppergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammaincc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_betainc(self, expr):
betainc = self._module_format('scipy.special.betainc')
beta = self._module_format('scipy.special.beta')
args = [self._print(arg) for arg in expr.args]
return f"({betainc}({args[0]}, {args[1]}, {args[3]}) - {betainc}({args[0]}, {args[1]}, {args[2]})) \
* {beta}({args[0]}, {args[1]})"
def _print_betainc_regularized(self, expr):
return "{0}({1}, {2}, {4}) - {0}({1}, {2}, {3})".format(
self._module_format('scipy.special.betainc'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]),
self._print(expr.args[3]))
def _print_fresnels(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_fresnelc(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_airyai(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airyaiprime(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybi(self, expr):
return "{}({})[2]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybiprime(self, expr):
return "{}({})[3]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_bernoulli(self, expr):
# scipy's bernoulli is inconsistent with SymPy's so rewrite
return self._print(expr._eval_rewrite_as_zeta(*expr.args))
def _print_harmonic(self, expr):
return self._print(expr._eval_rewrite_as_zeta(*expr.args))
def _print_Integral(self, e):
integration_vars, limits = _unpack_integral_limits(e)
if len(limits) == 1:
# nicer (but not necessary) to prefer quad over nquad for 1D case
module_str = self._module_format("scipy.integrate.quad")
limit_str = "%s, %s" % tuple(map(self._print, limits[0]))
else:
module_str = self._module_format("scipy.integrate.nquad")
limit_str = "({})".format(", ".join(
"(%s, %s)" % tuple(map(self._print, l)) for l in limits))
return "{}(lambda {}: {}, {})[0]".format(
module_str,
", ".join(map(self._print, integration_vars)),
self._print(e.args[0]),
limit_str)
def _print_Si(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.sici"),
self._print(expr.args[0]))
def _print_Ci(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.sici"),
self._print(expr.args[0]))
for func in _scipy_known_functions:
setattr(SciPyPrinter, f'_print_{func}', _print_known_func)
for const in _scipy_known_constants:
setattr(SciPyPrinter, f'_print_{const}', _print_known_const)
_cupy_known_functions = {k : "cupy." + v for k, v in _known_functions_numpy.items()}
_cupy_known_constants = {k : "cupy." + v for k, v in _known_constants_numpy.items()}
class CuPyPrinter(NumPyPrinter):
"""
CuPy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'cupy'
_kf = _cupy_known_functions
_kc = _cupy_known_constants
def __init__(self, settings=None):
super().__init__(settings=settings)
for func in _cupy_known_functions:
setattr(CuPyPrinter, f'_print_{func}', _print_known_func)
for const in _cupy_known_constants:
setattr(CuPyPrinter, f'_print_{const}', _print_known_const)
_jax_known_functions = {k: 'jax.numpy.' + v for k, v in _known_functions_numpy.items()}
_jax_known_constants = {k: 'jax.numpy.' + v for k, v in _known_constants_numpy.items()}
class JaxPrinter(NumPyPrinter):
"""
JAX printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = "jax.numpy"
_kf = _jax_known_functions
_kc = _jax_known_constants
def __init__(self, settings=None):
super().__init__(settings=settings)
self.printmethod = '_jaxcode'
# These need specific override to allow for the lack of "jax.numpy.reduce"
def _print_And(self, expr):
"Logical And printer"
return "{}({}.asarray([{}]), axis=0)".format(
self._module_format(self._module + ".all"),
self._module_format(self._module),
",".join(self._print(i) for i in expr.args),
)
def _print_Or(self, expr):
"Logical Or printer"
return "{}({}.asarray([{}]), axis=0)".format(
self._module_format(self._module + ".any"),
self._module_format(self._module),
",".join(self._print(i) for i in expr.args),
)
for func in _jax_known_functions:
setattr(JaxPrinter, f'_print_{func}', _print_known_func)
for const in _jax_known_constants:
setattr(JaxPrinter, f'_print_{const}', _print_known_const)
|