Spaces:
Sleeping
Sleeping
File size: 2,002 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from sympy.unify.rewrite import rewriterule
from sympy.core.basic import Basic
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.trigonometric import sin
from sympy.abc import x, y
from sympy.strategies.rl import rebuild
from sympy.assumptions import Q
p, q = Symbol('p'), Symbol('q')
def test_simple():
rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,))
assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
p1 = p**2
p2 = p**3
rl = rewriterule(p1, p2, variables=(p,))
expr = x**2
assert list(rl(expr)) == [x**3]
def test_simple_variables():
rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,))
assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
rl = rewriterule(x**2, x**3, variables=(x,))
assert list(rl(y**2)) == [y**3]
def test_moderate():
p1 = p**2 + q**3
p2 = (p*q)**4
rl = rewriterule(p1, p2, (p, q))
expr = x**2 + y**3
assert list(rl(expr)) == [(x*y)**4]
def test_sincos():
p1 = sin(p)**2 + sin(p)**2
p2 = 1
rl = rewriterule(p1, p2, (p, q))
assert list(rl(sin(x)**2 + sin(x)**2)) == [1]
assert list(rl(sin(y)**2 + sin(y)**2)) == [1]
def test_Exprs_ok():
rl = rewriterule(p+q, q+p, (p, q))
next(rl(x+y)).is_commutative
str(next(rl(x+y)))
def test_condition_simple():
rl = rewriterule(x, x+1, [x], lambda x: x < 10)
assert not list(rl(S(15)))
assert rebuild(next(rl(S(5)))) == 6
def test_condition_multiple():
rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer)
a = Symbol('a')
b = Symbol('b', integer=True)
expr = a + b
assert list(rl(expr)) == [b**a]
c = Symbol('c', integer=True)
d = Symbol('d', integer=True)
assert set(rl(c + d)) == {c**d, d**c}
def test_assumptions():
rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x))
a, b = map(Symbol, 'ab')
expr = a + b
assert list(rl(expr, Q.integer(b))) == [b**a]
|