File size: 55,234 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
"""
This module provides convenient functions to transform SymPy expressions to
lambda functions which can be used to calculate numerical values very fast.
"""

from __future__ import annotations
from typing import Any

import builtins
import inspect
import keyword
import textwrap
import linecache

# Required despite static analysis claiming it is not used
from sympy.external import import_module # noqa:F401
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import (is_sequence, iterable,
    NotIterable, flatten)
from sympy.utilities.misc import filldedent


__doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']}


# Default namespaces, letting us define translations that can't be defined
# by simple variable maps, like I => 1j
MATH_DEFAULT: dict[str, Any] = {}
MPMATH_DEFAULT: dict[str, Any] = {}
NUMPY_DEFAULT: dict[str, Any] = {"I": 1j}
SCIPY_DEFAULT: dict[str, Any] = {"I": 1j}
CUPY_DEFAULT: dict[str, Any] = {"I": 1j}
JAX_DEFAULT: dict[str, Any] = {"I": 1j}
TENSORFLOW_DEFAULT: dict[str, Any] = {}
SYMPY_DEFAULT: dict[str, Any] = {}
NUMEXPR_DEFAULT: dict[str, Any] = {}

# These are the namespaces the lambda functions will use.
# These are separate from the names above because they are modified
# throughout this file, whereas the defaults should remain unmodified.

MATH = MATH_DEFAULT.copy()
MPMATH = MPMATH_DEFAULT.copy()
NUMPY = NUMPY_DEFAULT.copy()
SCIPY = SCIPY_DEFAULT.copy()
CUPY = CUPY_DEFAULT.copy()
JAX = JAX_DEFAULT.copy()
TENSORFLOW = TENSORFLOW_DEFAULT.copy()
SYMPY = SYMPY_DEFAULT.copy()
NUMEXPR = NUMEXPR_DEFAULT.copy()


# Mappings between SymPy and other modules function names.
MATH_TRANSLATIONS = {
    "ceiling": "ceil",
    "E": "e",
    "ln": "log",
}

# NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses
# of Function to automatically evalf.
MPMATH_TRANSLATIONS = {
    "Abs": "fabs",
    "elliptic_k": "ellipk",
    "elliptic_f": "ellipf",
    "elliptic_e": "ellipe",
    "elliptic_pi": "ellippi",
    "ceiling": "ceil",
    "chebyshevt": "chebyt",
    "chebyshevu": "chebyu",
    "assoc_legendre": "legenp",
    "E": "e",
    "I": "j",
    "ln": "log",
    #"lowergamma":"lower_gamma",
    "oo": "inf",
    #"uppergamma":"upper_gamma",
    "LambertW": "lambertw",
    "MutableDenseMatrix": "matrix",
    "ImmutableDenseMatrix": "matrix",
    "conjugate": "conj",
    "dirichlet_eta": "altzeta",
    "Ei": "ei",
    "Shi": "shi",
    "Chi": "chi",
    "Si": "si",
    "Ci": "ci",
    "RisingFactorial": "rf",
    "FallingFactorial": "ff",
    "betainc_regularized": "betainc",
}

NUMPY_TRANSLATIONS: dict[str, str] = {
    "Heaviside": "heaviside",
}
SCIPY_TRANSLATIONS: dict[str, str] = {
    "jn" : "spherical_jn",
    "yn" : "spherical_yn"
}
CUPY_TRANSLATIONS: dict[str, str] = {}
JAX_TRANSLATIONS: dict[str, str] = {}

TENSORFLOW_TRANSLATIONS: dict[str, str] = {}

NUMEXPR_TRANSLATIONS: dict[str, str] = {}

# Available modules:
MODULES = {
    "math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
    "mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)),
    "numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)),
    "scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import scipy; import numpy; from scipy.special import *",)),
    "cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)),
    "jax": (JAX, JAX_DEFAULT, JAX_TRANSLATIONS, ("import jax",)),
    "tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)),
    "sympy": (SYMPY, SYMPY_DEFAULT, {}, (
        "from sympy.functions import *",
        "from sympy.matrices import *",
        "from sympy import Integral, pi, oo, nan, zoo, E, I",)),
    "numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS,
                 ("import_module('numexpr')", )),
}


def _import(module, reload=False):
    """
    Creates a global translation dictionary for module.

    The argument module has to be one of the following strings: "math",
    "mpmath", "numpy", "sympy", "tensorflow", "jax".
    These dictionaries map names of Python functions to their equivalent in
    other modules.
    """
    try:
        namespace, namespace_default, translations, import_commands = MODULES[
            module]
    except KeyError:
        raise NameError(
            "'%s' module cannot be used for lambdification" % module)

    # Clear namespace or exit
    if namespace != namespace_default:
        # The namespace was already generated, don't do it again if not forced.
        if reload:
            namespace.clear()
            namespace.update(namespace_default)
        else:
            return

    for import_command in import_commands:
        if import_command.startswith('import_module'):
            module = eval(import_command)

            if module is not None:
                namespace.update(module.__dict__)
                continue
        else:
            try:
                exec(import_command, {}, namespace)
                continue
            except ImportError:
                pass

        raise ImportError(
            "Cannot import '%s' with '%s' command" % (module, import_command))

    # Add translated names to namespace
    for sympyname, translation in translations.items():
        namespace[sympyname] = namespace[translation]

    # For computing the modulus of a SymPy expression we use the builtin abs
    # function, instead of the previously used fabs function for all
    # translation modules. This is because the fabs function in the math
    # module does not accept complex valued arguments. (see issue 9474). The
    # only exception, where we don't use the builtin abs function is the
    # mpmath translation module, because mpmath.fabs returns mpf objects in
    # contrast to abs().
    if 'Abs' not in namespace:
        namespace['Abs'] = abs

# Used for dynamically generated filenames that are inserted into the
# linecache.
_lambdify_generated_counter = 1


@doctest_depends_on(modules=('numpy', 'scipy', 'tensorflow',), python_version=(3,))
def lambdify(args, expr, modules=None, printer=None, use_imps=True,
             dummify=False, cse=False, docstring_limit=1000):
    """Convert a SymPy expression into a function that allows for fast
    numeric evaluation.

    .. warning::
       This function uses ``exec``, and thus should not be used on
       unsanitized input.

    .. deprecated:: 1.7
       Passing a set for the *args* parameter is deprecated as sets are
       unordered. Use an ordered iterable such as a list or tuple.

    Explanation
    ===========

    For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
    equivalent NumPy function that numerically evaluates it:

    >>> from sympy import sin, cos, symbols, lambdify
    >>> import numpy as np
    >>> x = symbols('x')
    >>> expr = sin(x) + cos(x)
    >>> expr
    sin(x) + cos(x)
    >>> f = lambdify(x, expr, 'numpy')
    >>> a = np.array([1, 2])
    >>> f(a)
    [1.38177329 0.49315059]

    The primary purpose of this function is to provide a bridge from SymPy
    expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
    and tensorflow. In general, SymPy functions do not work with objects from
    other libraries, such as NumPy arrays, and functions from numeric
    libraries like NumPy or mpmath do not work on SymPy expressions.
    ``lambdify`` bridges the two by converting a SymPy expression to an
    equivalent numeric function.

    The basic workflow with ``lambdify`` is to first create a SymPy expression
    representing whatever mathematical function you wish to evaluate. This
    should be done using only SymPy functions and expressions. Then, use
    ``lambdify`` to convert this to an equivalent function for numerical
    evaluation. For instance, above we created ``expr`` using the SymPy symbol
    ``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
    equivalent NumPy function ``f``, and called it on a NumPy array ``a``.

    Parameters
    ==========

    args : List[Symbol]
        A variable or a list of variables whose nesting represents the
        nesting of the arguments that will be passed to the function.

        Variables can be symbols, undefined functions, or matrix symbols.

        >>> from sympy import Eq
        >>> from sympy.abc import x, y, z

        The list of variables should match the structure of how the
        arguments will be passed to the function. Simply enclose the
        parameters as they will be passed in a list.

        To call a function like ``f(x)`` then ``[x]``
        should be the first argument to ``lambdify``; for this
        case a single ``x`` can also be used:

        >>> f = lambdify(x, x + 1)
        >>> f(1)
        2
        >>> f = lambdify([x], x + 1)
        >>> f(1)
        2

        To call a function like ``f(x, y)`` then ``[x, y]`` will
        be the first argument of the ``lambdify``:

        >>> f = lambdify([x, y], x + y)
        >>> f(1, 1)
        2

        To call a function with a single 3-element tuple like
        ``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
        argument of the ``lambdify``:

        >>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
        >>> f((3, 4, 5))
        True

        If two args will be passed and the first is a scalar but
        the second is a tuple with two arguments then the items
        in the list should match that structure:

        >>> f = lambdify([x, (y, z)], x + y + z)
        >>> f(1, (2, 3))
        6

    expr : Expr
        An expression, list of expressions, or matrix to be evaluated.

        Lists may be nested.
        If the expression is a list, the output will also be a list.

        >>> f = lambdify(x, [x, [x + 1, x + 2]])
        >>> f(1)
        [1, [2, 3]]

        If it is a matrix, an array will be returned (for the NumPy module).

        >>> from sympy import Matrix
        >>> f = lambdify(x, Matrix([x, x + 1]))
        >>> f(1)
        [[1]
        [2]]

        Note that the argument order here (variables then expression) is used
        to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
        (roughly) like ``lambda x: expr``
        (see :ref:`lambdify-how-it-works` below).

    modules : str, optional
        Specifies the numeric library to use.

        If not specified, *modules* defaults to:

        - ``["scipy", "numpy"]`` if SciPy is installed
        - ``["numpy"]`` if only NumPy is installed
        - ``["math", "mpmath", "sympy"]`` if neither is installed.

        That is, SymPy functions are replaced as far as possible by
        either ``scipy`` or ``numpy`` functions if available, and Python's
        standard library ``math``, or ``mpmath`` functions otherwise.

        *modules* can be one of the following types:

        - The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
          ``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the
          corresponding printer and namespace mapping for that module.
        - A module (e.g., ``math``). This uses the global namespace of the
          module. If the module is one of the above known modules, it will
          also use the corresponding printer and namespace mapping
          (i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
        - A dictionary that maps names of SymPy functions to arbitrary
          functions
          (e.g., ``{'sin': custom_sin}``).
        - A list that contains a mix of the arguments above, with higher
          priority given to entries appearing first
          (e.g., to use the NumPy module but override the ``sin`` function
          with a custom version, you can use
          ``[{'sin': custom_sin}, 'numpy']``).

    dummify : bool, optional
        Whether or not the variables in the provided expression that are not
        valid Python identifiers are substituted with dummy symbols.

        This allows for undefined functions like ``Function('f')(t)`` to be
        supplied as arguments. By default, the variables are only dummified
        if they are not valid Python identifiers.

        Set ``dummify=True`` to replace all arguments with dummy symbols
        (if ``args`` is not a string) - for example, to ensure that the
        arguments do not redefine any built-in names.

    cse : bool, or callable, optional
        Large expressions can be computed more efficiently when
        common subexpressions are identified and precomputed before
        being used multiple time. Finding the subexpressions will make
        creation of the 'lambdify' function slower, however.

        When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
        the user may pass a function matching the ``cse`` signature.

    docstring_limit : int or None
        When lambdifying large expressions, a significant proportion of the time
        spent inside ``lambdify`` is spent producing a string representation of
        the expression for use in the automatically generated docstring of the
        returned function. For expressions containing hundreds or more nodes the
        resulting docstring often becomes so long and dense that it is difficult
        to read. To reduce the runtime of lambdify, the rendering of the full
        expression inside the docstring can be disabled.

        When ``None``, the full expression is rendered in the docstring. When
        ``0`` or a negative ``int``, an ellipsis is rendering in the docstring
        instead of the expression. When a strictly positive ``int``, if the
        number of nodes in the expression exceeds ``docstring_limit`` an
        ellipsis is rendered in the docstring, otherwise a string representation
        of the expression is rendered as normal. The default is ``1000``.

    Examples
    ========

    >>> from sympy.utilities.lambdify import implemented_function
    >>> from sympy import sqrt, sin, Matrix
    >>> from sympy import Function
    >>> from sympy.abc import w, x, y, z

    >>> f = lambdify(x, x**2)
    >>> f(2)
    4
    >>> f = lambdify((x, y, z), [z, y, x])
    >>> f(1,2,3)
    [3, 2, 1]
    >>> f = lambdify(x, sqrt(x))
    >>> f(4)
    2.0
    >>> f = lambdify((x, y), sin(x*y)**2)
    >>> f(0, 5)
    0.0
    >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
    >>> row(1, 2)
    Matrix([[1, 3]])

    ``lambdify`` can be used to translate SymPy expressions into mpmath
    functions. This may be preferable to using ``evalf`` (which uses mpmath on
    the backend) in some cases.

    >>> f = lambdify(x, sin(x), 'mpmath')
    >>> f(1)
    0.8414709848078965

    Tuple arguments are handled and the lambdified function should
    be called with the same type of arguments as were used to create
    the function:

    >>> f = lambdify((x, (y, z)), x + y)
    >>> f(1, (2, 4))
    3

    The ``flatten`` function can be used to always work with flattened
    arguments:

    >>> from sympy.utilities.iterables import flatten
    >>> args = w, (x, (y, z))
    >>> vals = 1, (2, (3, 4))
    >>> f = lambdify(flatten(args), w + x + y + z)
    >>> f(*flatten(vals))
    10

    Functions present in ``expr`` can also carry their own numerical
    implementations, in a callable attached to the ``_imp_`` attribute. This
    can be used with undefined functions using the ``implemented_function``
    factory:

    >>> f = implemented_function(Function('f'), lambda x: x+1)
    >>> func = lambdify(x, f(x))
    >>> func(4)
    5

    ``lambdify`` always prefers ``_imp_`` implementations to implementations
    in other namespaces, unless the ``use_imps`` input parameter is False.

    Usage with Tensorflow:

    >>> import tensorflow as tf
    >>> from sympy import Max, sin, lambdify
    >>> from sympy.abc import x

    >>> f = Max(x, sin(x))
    >>> func = lambdify(x, f, 'tensorflow')

    After tensorflow v2, eager execution is enabled by default.
    If you want to get the compatible result across tensorflow v1 and v2
    as same as this tutorial, run this line.

    >>> tf.compat.v1.enable_eager_execution()

    If you have eager execution enabled, you can get the result out
    immediately as you can use numpy.

    If you pass tensorflow objects, you may get an ``EagerTensor``
    object instead of value.

    >>> result = func(tf.constant(1.0))
    >>> print(result)
    tf.Tensor(1.0, shape=(), dtype=float32)
    >>> print(result.__class__)
    <class 'tensorflow.python.framework.ops.EagerTensor'>

    You can use ``.numpy()`` to get the numpy value of the tensor.

    >>> result.numpy()
    1.0

    >>> var = tf.Variable(2.0)
    >>> result = func(var) # also works for tf.Variable and tf.Placeholder
    >>> result.numpy()
    2.0

    And it works with any shape array.

    >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
    >>> result = func(tensor)
    >>> result.numpy()
    [[1. 2.]
     [3. 4.]]

    Notes
    =====

    - For functions involving large array calculations, numexpr can provide a
      significant speedup over numpy. Please note that the available functions
      for numexpr are more limited than numpy but can be expanded with
      ``implemented_function`` and user defined subclasses of Function. If
      specified, numexpr may be the only option in modules. The official list
      of numexpr functions can be found at:
      https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions

    - In the above examples, the generated functions can accept scalar
      values or numpy arrays as arguments.  However, in some cases
      the generated function relies on the input being a numpy array:

      >>> import numpy
      >>> from sympy import Piecewise
      >>> from sympy.testing.pytest import ignore_warnings
      >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")

      >>> with ignore_warnings(RuntimeWarning):
      ...     f(numpy.array([-1, 0, 1, 2]))
      [-1.   0.   1.   0.5]

      >>> f(0)
      Traceback (most recent call last):
          ...
      ZeroDivisionError: division by zero

      In such cases, the input should be wrapped in a numpy array:

      >>> with ignore_warnings(RuntimeWarning):
      ...     float(f(numpy.array([0])))
      0.0

      Or if numpy functionality is not required another module can be used:

      >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
      >>> f(0)
      0

    .. _lambdify-how-it-works:

    How it works
    ============

    When using this function, it helps a great deal to have an idea of what it
    is doing. At its core, lambdify is nothing more than a namespace
    translation, on top of a special printer that makes some corner cases work
    properly.

    To understand lambdify, first we must properly understand how Python
    namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
    with

    .. code:: python

        # sin_cos_sympy.py

        from sympy.functions.elementary.trigonometric import (cos, sin)

        def sin_cos(x):
            return sin(x) + cos(x)


    and one called ``sin_cos_numpy.py`` with

    .. code:: python

        # sin_cos_numpy.py

        from numpy import sin, cos

        def sin_cos(x):
            return sin(x) + cos(x)

    The two files define an identical function ``sin_cos``. However, in the
    first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
    ``cos``. In the second, they are defined as the NumPy versions.

    If we were to import the first file and use the ``sin_cos`` function, we
    would get something like

    >>> from sin_cos_sympy import sin_cos # doctest: +SKIP
    >>> sin_cos(1) # doctest: +SKIP
    cos(1) + sin(1)

    On the other hand, if we imported ``sin_cos`` from the second file, we
    would get

    >>> from sin_cos_numpy import sin_cos # doctest: +SKIP
    >>> sin_cos(1) # doctest: +SKIP
    1.38177329068

    In the first case we got a symbolic output, because it used the symbolic
    ``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
    result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
    from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
    used was not inherent to the ``sin_cos`` function definition. Both
    ``sin_cos`` definitions are exactly the same. Rather, it was based on the
    names defined at the module where the ``sin_cos`` function was defined.

    The key point here is that when function in Python references a name that
    is not defined in the function, that name is looked up in the "global"
    namespace of the module where that function is defined.

    Now, in Python, we can emulate this behavior without actually writing a
    file to disk using the ``exec`` function. ``exec`` takes a string
    containing a block of Python code, and a dictionary that should contain
    the global variables of the module. It then executes the code "in" that
    dictionary, as if it were the module globals. The following is equivalent
    to the ``sin_cos`` defined in ``sin_cos_sympy.py``:

    >>> import sympy
    >>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
    >>> exec('''
    ... def sin_cos(x):
    ...     return sin(x) + cos(x)
    ... ''', module_dictionary)
    >>> sin_cos = module_dictionary['sin_cos']
    >>> sin_cos(1)
    cos(1) + sin(1)

    and similarly with ``sin_cos_numpy``:

    >>> import numpy
    >>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
    >>> exec('''
    ... def sin_cos(x):
    ...     return sin(x) + cos(x)
    ... ''', module_dictionary)
    >>> sin_cos = module_dictionary['sin_cos']
    >>> sin_cos(1)
    1.38177329068

    So now we can get an idea of how ``lambdify`` works. The name "lambdify"
    comes from the fact that we can think of something like ``lambdify(x,
    sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
    ``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
    the symbols argument is first in ``lambdify``, as opposed to most SymPy
    functions where it comes after the expression: to better mimic the
    ``lambda`` keyword.

    ``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and

    1. Converts it to a string
    2. Creates a module globals dictionary based on the modules that are
       passed in (by default, it uses the NumPy module)
    3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
       list of variables separated by commas, and ``{expr}`` is the string
       created in step 1., then ``exec``s that string with the module globals
       namespace and returns ``func``.

    In fact, functions returned by ``lambdify`` support inspection. So you can
    see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
    are using IPython or the Jupyter notebook.

    >>> f = lambdify(x, sin(x) + cos(x))
    >>> import inspect
    >>> print(inspect.getsource(f))
    def _lambdifygenerated(x):
        return sin(x) + cos(x)

    This shows us the source code of the function, but not the namespace it
    was defined in. We can inspect that by looking at the ``__globals__``
    attribute of ``f``:

    >>> f.__globals__['sin']
    <ufunc 'sin'>
    >>> f.__globals__['cos']
    <ufunc 'cos'>
    >>> f.__globals__['sin'] is numpy.sin
    True

    This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
    ``numpy.sin`` and ``numpy.cos``.

    Note that there are some convenience layers in each of these steps, but at
    the core, this is how ``lambdify`` works. Step 1 is done using the
    ``LambdaPrinter`` printers defined in the printing module (see
    :mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
    to define how they should be converted to a string for different modules.
    You can change which printer ``lambdify`` uses by passing a custom printer
    in to the ``printer`` argument.

    Step 2 is augmented by certain translations. There are default
    translations for each module, but you can provide your own by passing a
    list to the ``modules`` argument. For instance,

    >>> def mysin(x):
    ...     print('taking the sin of', x)
    ...     return numpy.sin(x)
    ...
    >>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
    >>> f(1)
    taking the sin of 1
    0.8414709848078965

    The globals dictionary is generated from the list by merging the
    dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
    merging is done so that earlier items take precedence, which is why
    ``mysin`` is used above instead of ``numpy.sin``.

    If you want to modify the way ``lambdify`` works for a given function, it
    is usually easiest to do so by modifying the globals dictionary as such.
    In more complicated cases, it may be necessary to create and pass in a
    custom printer.

    Finally, step 3 is augmented with certain convenience operations, such as
    the addition of a docstring.

    Understanding how ``lambdify`` works can make it easier to avoid certain
    gotchas when using it. For instance, a common mistake is to create a
    lambdified function for one module (say, NumPy), and pass it objects from
    another (say, a SymPy expression).

    For instance, say we create

    >>> from sympy.abc import x
    >>> f = lambdify(x, x + 1, 'numpy')

    Now if we pass in a NumPy array, we get that array plus 1

    >>> import numpy
    >>> a = numpy.array([1, 2])
    >>> f(a)
    [2 3]

    But what happens if you make the mistake of passing in a SymPy expression
    instead of a NumPy array:

    >>> f(x + 1)
    x + 2

    This worked, but it was only by accident. Now take a different lambdified
    function:

    >>> from sympy import sin
    >>> g = lambdify(x, x + sin(x), 'numpy')

    This works as expected on NumPy arrays:

    >>> g(a)
    [1.84147098 2.90929743]

    But if we try to pass in a SymPy expression, it fails

    >>> g(x + 1)
    Traceback (most recent call last):
    ...
    TypeError: loop of ufunc does not support argument 0 of type Add which has
               no callable sin method

    Now, let's look at what happened. The reason this fails is that ``g``
    calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
    know how to operate on a SymPy object. **As a general rule, NumPy
    functions do not know how to operate on SymPy expressions, and SymPy
    functions do not know how to operate on NumPy arrays. This is why lambdify
    exists: to provide a bridge between SymPy and NumPy.**

    However, why is it that ``f`` did work? That's because ``f`` does not call
    any functions, it only adds 1. So the resulting function that is created,
    ``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
    namespace it is defined in. Thus it works, but only by accident. A future
    version of ``lambdify`` may remove this behavior.

    Be aware that certain implementation details described here may change in
    future versions of SymPy. The API of passing in custom modules and
    printers will not change, but the details of how a lambda function is
    created may change. However, the basic idea will remain the same, and
    understanding it will be helpful to understanding the behavior of
    lambdify.

    **In general: you should create lambdified functions for one module (say,
    NumPy), and only pass it input types that are compatible with that module
    (say, NumPy arrays).** Remember that by default, if the ``module``
    argument is not provided, ``lambdify`` creates functions using the NumPy
    and SciPy namespaces.
    """
    from sympy.core.symbol import Symbol
    from sympy.core.expr import Expr

    # If the user hasn't specified any modules, use what is available.
    if modules is None:
        try:
            _import("scipy")
        except ImportError:
            try:
                _import("numpy")
            except ImportError:
                # Use either numpy (if available) or python.math where possible.
                # XXX: This leads to different behaviour on different systems and
                #      might be the reason for irreproducible errors.
                modules = ["math", "mpmath", "sympy"]
            else:
                modules = ["numpy"]
        else:
            modules = ["numpy", "scipy"]

    # Get the needed namespaces.
    namespaces = []
    # First find any function implementations
    if use_imps:
        namespaces.append(_imp_namespace(expr))
    # Check for dict before iterating
    if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
        namespaces.append(modules)
    else:
        # consistency check
        if _module_present('numexpr', modules) and len(modules) > 1:
            raise TypeError("numexpr must be the only item in 'modules'")
        namespaces += list(modules)
    # fill namespace with first having highest priority
    namespace = {}
    for m in namespaces[::-1]:
        buf = _get_namespace(m)
        namespace.update(buf)

    if hasattr(expr, "atoms"):
        #Try if you can extract symbols from the expression.
        #Move on if expr.atoms in not implemented.
        syms = expr.atoms(Symbol)
        for term in syms:
            namespace.update({str(term): term})

    if printer is None:
        if _module_present('mpmath', namespaces):
            from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore
        elif _module_present('scipy', namespaces):
            from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore
        elif _module_present('numpy', namespaces):
            from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore
        elif _module_present('cupy', namespaces):
            from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore
        elif _module_present('jax', namespaces):
            from sympy.printing.numpy import JaxPrinter as Printer # type: ignore
        elif _module_present('numexpr', namespaces):
            from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore
        elif _module_present('tensorflow', namespaces):
            from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore
        elif _module_present('sympy', namespaces):
            from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore
        else:
            from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore
        user_functions = {}
        for m in namespaces[::-1]:
            if isinstance(m, dict):
                for k in m:
                    user_functions[k] = k
        printer = Printer({'fully_qualified_modules': False, 'inline': True,
                           'allow_unknown_functions': True,
                           'user_functions': user_functions})

    if isinstance(args, set):
        sympy_deprecation_warning(
            """
Passing the function arguments to lambdify() as a set is deprecated. This
leads to unpredictable results since sets are unordered. Instead, use a list
or tuple for the function arguments.
            """,
            deprecated_since_version="1.6.3",
            active_deprecations_target="deprecated-lambdify-arguments-set",
                )

    # Get the names of the args, for creating a docstring
    iterable_args = (args,) if isinstance(args, Expr) else args
    names = []

    # Grab the callers frame, for getting the names by inspection (if needed)
    callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore
    for n, var in enumerate(iterable_args):
        if hasattr(var, 'name'):
            names.append(var.name)
        else:
            # It's an iterable. Try to get name by inspection of calling frame.
            name_list = [var_name for var_name, var_val in callers_local_vars
                    if var_val is var]
            if len(name_list) == 1:
                names.append(name_list[0])
            else:
                # Cannot infer name with certainty. arg_# will have to do.
                names.append('arg_' + str(n))

    # Create the function definition code and execute it
    funcname = '_lambdifygenerated'
    if _module_present('tensorflow', namespaces):
        funcprinter = _TensorflowEvaluatorPrinter(printer, dummify)
    else:
        funcprinter = _EvaluatorPrinter(printer, dummify)

    if cse == True:
        from sympy.simplify.cse_main import cse as _cse
        cses, _expr = _cse(expr, list=False)
    elif callable(cse):
        cses, _expr = cse(expr)
    else:
        cses, _expr = (), expr
    funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses)

    # Collect the module imports from the code printers.
    imp_mod_lines = []
    for mod, keys in (getattr(printer, 'module_imports', None) or {}).items():
        for k in keys:
            if k not in namespace:
                ln = "from %s import %s" % (mod, k)
                try:
                    exec(ln, {}, namespace)
                except ImportError:
                    # Tensorflow 2.0 has issues with importing a specific
                    # function from its submodule.
                    # https://github.com/tensorflow/tensorflow/issues/33022
                    ln = "%s = %s.%s" % (k, mod, k)
                    exec(ln, {}, namespace)
                imp_mod_lines.append(ln)

    # Provide lambda expression with builtins, and compatible implementation of range
    namespace.update({'builtins':builtins, 'range':range})

    funclocals = {}
    global _lambdify_generated_counter
    filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter
    _lambdify_generated_counter += 1
    c = compile(funcstr, filename, 'exec')
    exec(c, namespace, funclocals)
    # mtime has to be None or else linecache.checkcache will remove it
    linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore

    func = funclocals[funcname]

    # Apply the docstring
    sig = "func({})".format(", ".join(str(i) for i in names))
    sig = textwrap.fill(sig, subsequent_indent=' '*8)
    if _too_large_for_docstring(expr, docstring_limit):
        expr_str = "EXPRESSION REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)"
        src_str = "SOURCE CODE REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)"
    else:
        expr_str = str(expr)
        if len(expr_str) > 78:
            expr_str = textwrap.wrap(expr_str, 75)[0] + '...'
        src_str = funcstr
    func.__doc__ = (
        "Created with lambdify. Signature:\n\n"
        "{sig}\n\n"
        "Expression:\n\n"
        "{expr}\n\n"
        "Source code:\n\n"
        "{src}\n\n"
        "Imported modules:\n\n"
        "{imp_mods}"
        ).format(sig=sig, expr=expr_str, src=src_str, imp_mods='\n'.join(imp_mod_lines))
    return func

def _module_present(modname, modlist):
    if modname in modlist:
        return True
    for m in modlist:
        if hasattr(m, '__name__') and m.__name__ == modname:
            return True
    return False

def _get_namespace(m):
    """
    This is used by _lambdify to parse its arguments.
    """
    if isinstance(m, str):
        _import(m)
        return MODULES[m][0]
    elif isinstance(m, dict):
        return m
    elif hasattr(m, "__dict__"):
        return m.__dict__
    else:
        raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)


def _recursive_to_string(doprint, arg):
    """Functions in lambdify accept both SymPy types and non-SymPy types such as python
    lists and tuples. This method ensures that we only call the doprint method of the
    printer with SymPy types (so that the printer safely can use SymPy-methods)."""
    from sympy.matrices.matrixbase import MatrixBase
    from sympy.core.basic import Basic

    if isinstance(arg, (Basic, MatrixBase)):
        return doprint(arg)
    elif iterable(arg):
        if isinstance(arg, list):
            left, right = "[", "]"
        elif isinstance(arg, tuple):
            left, right = "(", ",)"
            if not arg:
                return "()"
        else:
            raise NotImplementedError("unhandled type: %s, %s" % (type(arg), arg))
        return left +', '.join(_recursive_to_string(doprint, e) for e in arg) + right
    elif isinstance(arg, str):
        return arg
    else:
        return doprint(arg)


def lambdastr(args, expr, printer=None, dummify=None):
    """
    Returns a string that can be evaluated to a lambda function.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import lambdastr
    >>> lambdastr(x, x**2)
    'lambda x: (x**2)'
    >>> lambdastr((x,y,z), [z,y,x])
    'lambda x,y,z: ([z, y, x])'

    Although tuples may not appear as arguments to lambda in Python 3,
    lambdastr will create a lambda function that will unpack the original
    arguments so that nested arguments can be handled:

    >>> lambdastr((x, (y, z)), x + y)
    'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])'
    """
    # Transforming everything to strings.
    from sympy.matrices import DeferredVector
    from sympy.core.basic import Basic
    from sympy.core.function import (Derivative, Function)
    from sympy.core.symbol import (Dummy, Symbol)
    from sympy.core.sympify import sympify

    if printer is not None:
        if inspect.isfunction(printer):
            lambdarepr = printer
        else:
            if inspect.isclass(printer):
                lambdarepr = lambda expr: printer().doprint(expr)
            else:
                lambdarepr = lambda expr: printer.doprint(expr)
    else:
        #XXX: This has to be done here because of circular imports
        from sympy.printing.lambdarepr import lambdarepr

    def sub_args(args, dummies_dict):
        if isinstance(args, str):
            return args
        elif isinstance(args, DeferredVector):
            return str(args)
        elif iterable(args):
            dummies = flatten([sub_args(a, dummies_dict) for a in args])
            return ",".join(str(a) for a in dummies)
        else:
            # replace these with Dummy symbols
            if isinstance(args, (Function, Symbol, Derivative)):
                dummies = Dummy()
                dummies_dict.update({args : dummies})
                return str(dummies)
            else:
                return str(args)

    def sub_expr(expr, dummies_dict):
        expr = sympify(expr)
        # dict/tuple are sympified to Basic
        if isinstance(expr, Basic):
            expr = expr.xreplace(dummies_dict)
        # list is not sympified to Basic
        elif isinstance(expr, list):
            expr = [sub_expr(a, dummies_dict) for a in expr]
        return expr

    # Transform args
    def isiter(l):
        return iterable(l, exclude=(str, DeferredVector, NotIterable))

    def flat_indexes(iterable):
        n = 0

        for el in iterable:
            if isiter(el):
                for ndeep in flat_indexes(el):
                    yield (n,) + ndeep
            else:
                yield (n,)

            n += 1

    if dummify is None:
        dummify = any(isinstance(a, Basic) and
            a.atoms(Function, Derivative) for a in (
            args if isiter(args) else [args]))

    if isiter(args) and any(isiter(i) for i in args):
        dum_args = [str(Dummy(str(i))) for i in range(len(args))]

        indexed_args = ','.join([
            dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]])
                    for ind in flat_indexes(args)])

        lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify)

        return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args)

    dummies_dict = {}
    if dummify:
        args = sub_args(args, dummies_dict)
    else:
        if isinstance(args, str):
            pass
        elif iterable(args, exclude=DeferredVector):
            args = ",".join(str(a) for a in args)

    # Transform expr
    if dummify:
        if isinstance(expr, str):
            pass
        else:
            expr = sub_expr(expr, dummies_dict)
    expr = _recursive_to_string(lambdarepr, expr)
    return "lambda %s: (%s)" % (args, expr)

class _EvaluatorPrinter:
    def __init__(self, printer=None, dummify=False):
        self._dummify = dummify

        #XXX: This has to be done here because of circular imports
        from sympy.printing.lambdarepr import LambdaPrinter

        if printer is None:
            printer = LambdaPrinter()

        if inspect.isfunction(printer):
            self._exprrepr = printer
        else:
            if inspect.isclass(printer):
                printer = printer()

            self._exprrepr = printer.doprint

            #if hasattr(printer, '_print_Symbol'):
            #    symbolrepr = printer._print_Symbol

            #if hasattr(printer, '_print_Dummy'):
            #    dummyrepr = printer._print_Dummy

        # Used to print the generated function arguments in a standard way
        self._argrepr = LambdaPrinter().doprint

    def doprint(self, funcname, args, expr, *, cses=()):
        """
        Returns the function definition code as a string.
        """
        from sympy.core.symbol import Dummy

        funcbody = []

        if not iterable(args):
            args = [args]

        if cses:
            subvars, subexprs = zip(*cses)
            exprs = [expr] + list(subexprs)
            argstrs, exprs = self._preprocess(args, exprs)
            expr, subexprs = exprs[0], exprs[1:]
            cses = zip(subvars, subexprs)
        else:
            argstrs, expr = self._preprocess(args, expr)

        # Generate argument unpacking and final argument list
        funcargs = []
        unpackings = []

        for argstr in argstrs:
            if iterable(argstr):
                funcargs.append(self._argrepr(Dummy()))
                unpackings.extend(self._print_unpacking(argstr, funcargs[-1]))
            else:
                funcargs.append(argstr)

        funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs))

        # Wrap input arguments before unpacking
        funcbody.extend(self._print_funcargwrapping(funcargs))

        funcbody.extend(unpackings)

        for s, e in cses:
            if e is None:
                funcbody.append('del {}'.format(self._exprrepr(s)))
            else:
                funcbody.append('{} = {}'.format(self._exprrepr(s), self._exprrepr(e)))

        str_expr = _recursive_to_string(self._exprrepr, expr)

        if '\n' in str_expr:
            str_expr = '({})'.format(str_expr)
        funcbody.append('return {}'.format(str_expr))

        funclines = [funcsig]
        funclines.extend(['    ' + line for line in funcbody])

        return '\n'.join(funclines) + '\n'

    @classmethod
    def _is_safe_ident(cls, ident):
        return isinstance(ident, str) and ident.isidentifier() \
                and not keyword.iskeyword(ident)

    def _preprocess(self, args, expr):
        """Preprocess args, expr to replace arguments that do not map
        to valid Python identifiers.

        Returns string form of args, and updated expr.
        """
        from sympy.core.basic import Basic
        from sympy.core.sorting import ordered
        from sympy.core.function import (Derivative, Function)
        from sympy.core.symbol import Dummy, uniquely_named_symbol
        from sympy.matrices import DeferredVector
        from sympy.core.expr import Expr

        # Args of type Dummy can cause name collisions with args
        # of type Symbol.  Force dummify of everything in this
        # situation.
        dummify = self._dummify or any(
            isinstance(arg, Dummy) for arg in flatten(args))

        argstrs = [None]*len(args)
        for arg, i in reversed(list(ordered(zip(args, range(len(args)))))):
            if iterable(arg):
                s, expr = self._preprocess(arg, expr)
            elif isinstance(arg, DeferredVector):
                s = str(arg)
            elif isinstance(arg, Basic) and arg.is_symbol:
                s = str(arg)
                if dummify or not self._is_safe_ident(s):
                    dummy = Dummy()
                    if isinstance(expr, Expr):
                        dummy = uniquely_named_symbol(
                            dummy.name, expr, modify=lambda s: '_' + s)
                    s = self._argrepr(dummy)
                    expr = self._subexpr(expr, {arg: dummy})
            elif dummify or isinstance(arg, (Function, Derivative)):
                dummy = Dummy()
                s = self._argrepr(dummy)
                expr = self._subexpr(expr, {arg: dummy})
            else:
                s = str(arg)
            argstrs[i] = s
        return argstrs, expr

    def _subexpr(self, expr, dummies_dict):
        from sympy.matrices import DeferredVector
        from sympy.core.sympify import sympify

        expr = sympify(expr)
        xreplace = getattr(expr, 'xreplace', None)
        if xreplace is not None:
            expr = xreplace(dummies_dict)
        else:
            if isinstance(expr, DeferredVector):
                pass
            elif isinstance(expr, dict):
                k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()]
                v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()]
                expr = dict(zip(k, v))
            elif isinstance(expr, tuple):
                expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr)
            elif isinstance(expr, list):
                expr = [self._subexpr(sympify(a), dummies_dict) for a in expr]
        return expr

    def _print_funcargwrapping(self, args):
        """Generate argument wrapping code.

        args is the argument list of the generated function (strings).

        Return value is a list of lines of code that will be inserted  at
        the beginning of the function definition.
        """
        return []

    def _print_unpacking(self, unpackto, arg):
        """Generate argument unpacking code.

        arg is the function argument to be unpacked (a string), and
        unpackto is a list or nested lists of the variable names (strings) to
        unpack to.
        """
        def unpack_lhs(lvalues):
            return '[{}]'.format(', '.join(
                unpack_lhs(val) if iterable(val) else val for val in lvalues))

        return ['{} = {}'.format(unpack_lhs(unpackto), arg)]

class _TensorflowEvaluatorPrinter(_EvaluatorPrinter):
    def _print_unpacking(self, lvalues, rvalue):
        """Generate argument unpacking code.

        This method is used when the input value is not interable,
        but can be indexed (see issue #14655).
        """

        def flat_indexes(elems):
            n = 0

            for el in elems:
                if iterable(el):
                    for ndeep in flat_indexes(el):
                        yield (n,) + ndeep
                else:
                    yield (n,)

                n += 1

        indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind)))
                                for ind in flat_indexes(lvalues))

        return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)]

def _imp_namespace(expr, namespace=None):
    """ Return namespace dict with function implementations

    We need to search for functions in anything that can be thrown at
    us - that is - anything that could be passed as ``expr``.  Examples
    include SymPy expressions, as well as tuples, lists and dicts that may
    contain SymPy expressions.

    Parameters
    ----------
    expr : object
       Something passed to lambdify, that will generate valid code from
       ``str(expr)``.
    namespace : None or mapping
       Namespace to fill.  None results in new empty dict

    Returns
    -------
    namespace : dict
       dict with keys of implemented function names within ``expr`` and
       corresponding values being the numerical implementation of
       function

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
    >>> from sympy import Function
    >>> f = implemented_function(Function('f'), lambda x: x+1)
    >>> g = implemented_function(Function('g'), lambda x: x*10)
    >>> namespace = _imp_namespace(f(g(x)))
    >>> sorted(namespace.keys())
    ['f', 'g']
    """
    # Delayed import to avoid circular imports
    from sympy.core.function import FunctionClass
    if namespace is None:
        namespace = {}
    # tuples, lists, dicts are valid expressions
    if is_sequence(expr):
        for arg in expr:
            _imp_namespace(arg, namespace)
        return namespace
    elif isinstance(expr, dict):
        for key, val in expr.items():
            # functions can be in dictionary keys
            _imp_namespace(key, namespace)
            _imp_namespace(val, namespace)
        return namespace
    # SymPy expressions may be Functions themselves
    func = getattr(expr, 'func', None)
    if isinstance(func, FunctionClass):
        imp = getattr(func, '_imp_', None)
        if imp is not None:
            name = expr.func.__name__
            if name in namespace and namespace[name] != imp:
                raise ValueError('We found more than one '
                                 'implementation with name '
                                 '"%s"' % name)
            namespace[name] = imp
    # and / or they may take Functions as arguments
    if hasattr(expr, 'args'):
        for arg in expr.args:
            _imp_namespace(arg, namespace)
    return namespace


def implemented_function(symfunc, implementation):
    """ Add numerical ``implementation`` to function ``symfunc``.

    ``symfunc`` can be an ``UndefinedFunction`` instance, or a name string.
    In the latter case we create an ``UndefinedFunction`` instance with that
    name.

    Be aware that this is a quick workaround, not a general method to create
    special symbolic functions. If you want to create a symbolic function to be
    used by all the machinery of SymPy you should subclass the ``Function``
    class.

    Parameters
    ----------
    symfunc : ``str`` or ``UndefinedFunction`` instance
       If ``str``, then create new ``UndefinedFunction`` with this as
       name.  If ``symfunc`` is an Undefined function, create a new function
       with the same name and the implemented function attached.
    implementation : callable
       numerical implementation to be called by ``evalf()`` or ``lambdify``

    Returns
    -------
    afunc : sympy.FunctionClass instance
       function with attached implementation

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.utilities.lambdify import implemented_function
    >>> from sympy import lambdify
    >>> f = implemented_function('f', lambda x: x+1)
    >>> lam_f = lambdify(x, f(x))
    >>> lam_f(4)
    5
    """
    # Delayed import to avoid circular imports
    from sympy.core.function import UndefinedFunction
    # if name, create function to hold implementation
    kwargs = {}
    if isinstance(symfunc, UndefinedFunction):
        kwargs = symfunc._kwargs
        symfunc = symfunc.__name__
    if isinstance(symfunc, str):
        # Keyword arguments to UndefinedFunction are added as attributes to
        # the created class.
        symfunc = UndefinedFunction(
            symfunc, _imp_=staticmethod(implementation), **kwargs)
    elif not isinstance(symfunc, UndefinedFunction):
        raise ValueError(filldedent('''
            symfunc should be either a string or
            an UndefinedFunction instance.'''))
    return symfunc


def _too_large_for_docstring(expr, limit):
    """Decide whether an ``Expr`` is too large to be fully rendered in a
    ``lambdify`` docstring.

    This is a fast alternative to ``count_ops``, which can become prohibitively
    slow for large expressions, because in this instance we only care whether
    ``limit`` is exceeded rather than counting the exact number of nodes in the
    expression.

    Parameters
    ==========
    expr : ``Expr``, (nested) ``list`` of ``Expr``, or ``Matrix``
        The same objects that can be passed to the ``expr`` argument of
        ``lambdify``.
    limit : ``int`` or ``None``
        The threshold above which an expression contains too many nodes to be
        usefully rendered in the docstring. If ``None`` then there is no limit.

    Returns
    =======
    bool
        ``True`` if the number of nodes in the expression exceeds the limit,
        ``False`` otherwise.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import _too_large_for_docstring
    >>> expr = x
    >>> _too_large_for_docstring(expr, None)
    False
    >>> _too_large_for_docstring(expr, 100)
    False
    >>> _too_large_for_docstring(expr, 1)
    False
    >>> _too_large_for_docstring(expr, 0)
    True
    >>> _too_large_for_docstring(expr, -1)
    True

    Does this split it?

    >>> expr = [x, y, z]
    >>> _too_large_for_docstring(expr, None)
    False
    >>> _too_large_for_docstring(expr, 100)
    False
    >>> _too_large_for_docstring(expr, 1)
    True
    >>> _too_large_for_docstring(expr, 0)
    True
    >>> _too_large_for_docstring(expr, -1)
    True

    >>> expr = [x, [y], z, [[x+y], [x*y*z, [x+y+z]]]]
    >>> _too_large_for_docstring(expr, None)
    False
    >>> _too_large_for_docstring(expr, 100)
    False
    >>> _too_large_for_docstring(expr, 1)
    True
    >>> _too_large_for_docstring(expr, 0)
    True
    >>> _too_large_for_docstring(expr, -1)
    True

    >>> expr = ((x + y + z)**5).expand()
    >>> _too_large_for_docstring(expr, None)
    False
    >>> _too_large_for_docstring(expr, 100)
    True
    >>> _too_large_for_docstring(expr, 1)
    True
    >>> _too_large_for_docstring(expr, 0)
    True
    >>> _too_large_for_docstring(expr, -1)
    True

    >>> from sympy import Matrix
    >>> expr = Matrix([[(x + y + z), ((x + y + z)**2).expand(),
    ...                 ((x + y + z)**3).expand(), ((x + y + z)**4).expand()]])
    >>> _too_large_for_docstring(expr, None)
    False
    >>> _too_large_for_docstring(expr, 1000)
    False
    >>> _too_large_for_docstring(expr, 100)
    True
    >>> _too_large_for_docstring(expr, 1)
    True
    >>> _too_large_for_docstring(expr, 0)
    True
    >>> _too_large_for_docstring(expr, -1)
    True

    """
    # Must be imported here to avoid a circular import error
    from sympy.core.traversal import postorder_traversal

    if limit is None:
        return False

    i = 0
    for _ in postorder_traversal(expr):
        i += 1
        if i > limit:
            return True
    return False