Spaces:
Sleeping
Sleeping
File size: 7,699 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
// Copyright (c) ONNX Project Contributors
/*
* SPDX-License-Identifier: Apache-2.0
*/
// ATTENTION: The code in this file is highly EXPERIMENTAL.
// Adventurous users should note that the APIs will probably change.
#pragma once
#include <cmath>
#include <functional>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "onnx/common/assertions.h"
#include "onnx/onnx_pb.h"
#include "onnx/string_utils.h"
namespace ONNX_NAMESPACE {
struct Tensor final {
private:
bool is_segment_;
int64_t segment_begin_;
int64_t segment_end_;
bool has_name_;
std::string name_;
int32_t elem_type_;
std::vector<int64_t> sizes_;
std::vector<float> float_data_;
std::vector<double> double_data_;
std::vector<int32_t> int32_data_;
std::vector<int64_t> int64_data_;
std::vector<uint64_t> uint64_data_;
std::vector<std::string> string_data_;
bool is_raw_data_;
std::string raw_data_;
public:
Tensor()
: is_segment_(false),
segment_begin_(0),
segment_end_(0),
has_name_(false),
elem_type_(ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED),
is_raw_data_(false) {}
Tensor(const Tensor& other)
: is_segment_(other.is_segment_),
segment_begin_(other.segment_begin_),
segment_end_(other.segment_end_),
has_name_(other.has_name_),
elem_type_(other.elem_type_),
sizes_(other.sizes_),
float_data_(other.float_data_),
double_data_(other.double_data_),
int32_data_(other.int32_data_),
int64_data_(other.int64_data_),
uint64_data_(other.uint64_data_),
is_raw_data_(other.is_raw_data_) {
// Deep copy. Avoid copy on write when using gcc<5.0
string_data_.resize(other.string_data_.size());
for (unsigned int i = 0; i < other.string_data_.size(); ++i) {
string_data_[i] = std::string(other.string_data_[i].data(), other.string_data_[i].size());
}
name_ = std::string(other.name_.data(), other.name_.size());
raw_data_ = std::string(other.raw_data_.data(), other.raw_data_.size());
}
Tensor(Tensor&&) = default;
~Tensor() = default;
friend void swap(Tensor& first, Tensor& second) {
using std::swap;
swap(first.is_segment_, second.is_segment_);
swap(first.segment_begin_, second.segment_begin_);
swap(first.segment_end_, second.segment_end_);
swap(first.has_name_, second.has_name_);
swap(first.name_, second.name_);
swap(first.elem_type_, second.elem_type_);
swap(first.sizes_, second.sizes_);
swap(first.float_data_, second.float_data_);
swap(first.double_data_, second.double_data_);
swap(first.int32_data_, second.int32_data_);
swap(first.int64_data_, second.int64_data_);
swap(first.uint64_data_, second.uint64_data_);
swap(first.is_raw_data_, second.is_raw_data_);
swap(first.string_data_, second.string_data_);
swap(first.raw_data_, second.raw_data_);
}
Tensor& operator=(Tensor other) noexcept {
swap(*this, other);
return *this;
}
const std::vector<int64_t>& sizes() const {
return sizes_;
}
std::vector<int64_t>& sizes() {
return sizes_;
}
/// if tensor is a scalar, the sizes is empty, but the element number is actually 1.
/// size_from_dim() cannot handle this case, while elem_num() handles it correctly
int64_t elem_num() const {
return std::accumulate(sizes_.begin(), sizes_.end(), (int64_t)1, std::multiplies<int64_t>{});
}
int64_t size_from_dim(int dim) const {
if (dim < 0) {
dim += (int)sizes_.size();
}
ONNX_ASSERT(dim >= 0 && (size_t)dim < sizes_.size());
return std::accumulate(sizes_.begin() + dim, sizes_.end(), (int64_t)1, std::multiplies<int64_t>{});
}
int32_t elem_type() const {
return elem_type_;
}
int32_t& elem_type() {
return elem_type_;
}
std::vector<std::string>& strings() {
return string_data_;
}
const std::vector<std::string>& strings() const {
return string_data_;
}
std::vector<float>& floats() {
return float_data_;
}
const std::vector<float>& floats() const {
return float_data_;
}
std::vector<double>& doubles() {
return double_data_;
}
const std::vector<double>& doubles() const {
return double_data_;
}
std::vector<int32_t>& int32s() {
return int32_data_;
}
const std::vector<int32_t>& int32s() const {
return int32_data_;
}
std::vector<int64_t>& int64s() {
return int64_data_;
}
const std::vector<int64_t>& int64s() const {
return int64_data_;
}
std::vector<uint64_t>& uint64s() {
return uint64_data_;
}
const std::vector<uint64_t>& uint64s() const {
return uint64_data_;
}
const std::string& raw() const {
return raw_data_;
}
void set_raw_data(std::string raw_data) {
is_raw_data_ = true;
raw_data_ = std::move(raw_data);
}
template <typename T>
T* data();
template <typename T>
const T* data() const;
bool is_segment() const {
return is_segment_;
}
int64_t segment_begin() const {
return segment_begin_;
}
int64_t segment_end() const {
return segment_end_;
}
void set_segment_begin_and_end(int64_t begin, int64_t end) {
is_segment_ = true;
segment_begin_ = begin;
segment_end_ = end;
}
bool hasName() const {
return has_name_;
}
const std::string& name() const {
return name_;
}
void setName(std::string name) {
has_name_ = true;
name_ = std::move(name);
}
bool is_raw_data() const {
return is_raw_data_;
}
};
template <>
inline std::string* Tensor::data<std::string>() {
ONNX_ASSERTM(
!is_raw_data(),
"data type is string. string content is required to be stored in repeated bytes string_data field."
"raw_data type cannot be string.");
return string_data_.data();
}
template <>
inline const std::string* Tensor::data<std::string>() const {
ONNX_ASSERTM(
!is_raw_data(),
"data type is string. string content is required to be stored in repeated bytes string_data field."
"raw_data type cannot be string.");
return string_data_.data();
}
#define define_data(type, field) \
template <> \
inline type* Tensor::data<type>() { \
if (is_raw_data_) { \
return (type*)const_cast<char*>(&raw_data_.data()[0]); \
} else { \
return field.data(); \
} \
} \
\
template <> \
inline const type* Tensor::data<type>() const { \
if (is_raw_data_) { \
return (const type*)(raw_data_.data()); \
} else { \
return field.data(); \
} \
}
define_data(float, float_data_);
define_data(double, double_data_);
define_data(int32_t, int32_data_);
define_data(int64_t, int64_data_);
define_data(uint64_t, uint64_data_);
#undef define_data
} // namespace ONNX_NAMESPACE
|