Spaces:
Sleeping
Sleeping
File size: 55,671 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 |
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import collections.abc
import numbers
import struct
from cmath import isnan
from typing import (
Any,
Callable,
Dict,
KeysView,
List,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
cast,
)
import google.protobuf.message
import numpy as np
from onnx import (
IR_VERSION,
AttributeProto,
FunctionProto,
GraphProto,
MapProto,
ModelProto,
NodeProto,
OperatorSetIdProto,
OptionalProto,
SequenceProto,
SparseTensorProto,
TensorProto,
TensorShapeProto,
TrainingInfoProto,
TypeProto,
ValueInfoProto,
defs,
mapping,
subbyte,
)
VersionRowType = Union[Tuple[str, int, int, int], Tuple[str, int, int, int, int]]
VersionTableType = List[VersionRowType]
AssignmentBindingType = List[Tuple[str, str]]
# This is a copy of the documented version in https://github.com/onnx/onnx/blob/main/docs/Versioning.md#released-versions
# Both must be updated whenever a new version of ONNX is released.
VERSION_TABLE: VersionTableType = [
# Release-version, IR version, ai.onnx version, ai.onnx.ml version, (optional) ai.onnx.training version
("1.0", 3, 1, 1),
("1.1", 3, 5, 1),
("1.1.2", 3, 6, 1),
("1.2", 3, 7, 1),
("1.3", 3, 8, 1),
("1.4.1", 4, 9, 1),
("1.5.0", 5, 10, 1),
("1.6.0", 6, 11, 2),
("1.7.0", 7, 12, 2, 1),
("1.8.0", 7, 13, 2, 1),
("1.8.1", 7, 13, 2, 1),
("1.9.0", 7, 14, 2, 1),
("1.10.0", 8, 15, 2, 1),
("1.10.1", 8, 15, 2, 1),
("1.10.2", 8, 15, 2, 1),
("1.11.0", 8, 16, 3, 1),
("1.12.0", 8, 17, 3, 1),
("1.13.0", 8, 18, 3, 1),
("1.13.1", 8, 18, 3, 1),
("1.14.0", 9, 19, 3, 1),
("1.14.1", 9, 19, 3, 1),
("1.15.0", 9, 20, 4, 1),
("1.16.0", 10, 21, 5, 1),
]
VersionMapType = Dict[Tuple[str, int], int]
def create_op_set_id_version_map(table: VersionTableType) -> VersionMapType:
"""Create a map from (opset-domain, opset-version) to ir-version from above table."""
result: VersionMapType = {}
def process(release_version: str, ir_version: int, *args: Any) -> None:
del release_version # Unused
for pair in zip(["ai.onnx", "ai.onnx.ml", "ai.onnx.training"], args):
if pair not in result:
result[pair] = ir_version
if pair[0] == "ai.onnx.training":
result["ai.onnx.preview.training", pair[1]] = ir_version
for row in table:
process(*row)
return result
OP_SET_ID_VERSION_MAP = create_op_set_id_version_map(VERSION_TABLE)
def find_min_ir_version_for(
opsetidlist: Sequence[OperatorSetIdProto], ignore_unknown: bool = False
) -> int:
"""Given list of opset ids, determine minimum IR version required.
Args:
opsetidlist: A sequence of OperatorSetIdProto.
ignore_unknown: If True, ignore unknown domain and return default minimum
version for that domain.
Returns:
The minimum IR version required (integer)
"""
default_min_version = 3
def find_min(domain: Union[str, None], version: int) -> int:
key = (domain or "ai.onnx", version)
if key in OP_SET_ID_VERSION_MAP:
return OP_SET_ID_VERSION_MAP[key]
if ignore_unknown:
return default_min_version
raise ValueError("Unsupported opset-version.")
if opsetidlist:
return max(find_min(x.domain, x.version) for x in opsetidlist)
return default_min_version # if no opsets specified
def make_node(
op_type: str,
inputs: Sequence[str],
outputs: Sequence[str],
name: Optional[str] = None,
doc_string: Optional[str] = None,
domain: Optional[str] = None,
overload: Optional[str] = None,
**kwargs: Any,
) -> NodeProto:
"""Construct a NodeProto.
Args:
op_type (string): The name of the operator to construct
inputs (list of string): list of input names
outputs (list of string): list of output names
name (string, default None): optional unique identifier for NodeProto
doc_string (string, default None): optional documentation string for NodeProto
domain (string, default None): optional domain for NodeProto.
If it's None, we will just use default domain (which is empty)
overload (string, default None): optional field, used to
resolve calls to model-local functions
**kwargs (dict): the attributes of the node. The acceptable values
are documented in :func:`make_attribute`.
Returns:
NodeProto
"""
node = NodeProto()
node.op_type = op_type
node.input.extend(inputs)
node.output.extend(outputs)
if name:
node.name = name
if doc_string:
node.doc_string = doc_string
if domain is not None:
node.domain = domain
if overload is not None:
node.overload = overload
if kwargs:
node.attribute.extend(
make_attribute(key, value)
for key, value in sorted(kwargs.items())
if value is not None
)
return node
def make_operatorsetid(
domain: str,
version: int,
) -> OperatorSetIdProto:
"""Construct an OperatorSetIdProto.
Args:
domain (string): The domain of the operator set id
version (integer): Version of operator set id
Returns:
OperatorSetIdProto
"""
operatorsetid = OperatorSetIdProto()
operatorsetid.domain = domain
operatorsetid.version = version
return operatorsetid
def make_graph(
nodes: Sequence[NodeProto],
name: str,
inputs: Sequence[ValueInfoProto],
outputs: Sequence[ValueInfoProto],
initializer: Optional[Sequence[TensorProto]] = None,
doc_string: Optional[str] = None,
value_info: Optional[Sequence[ValueInfoProto]] = None,
sparse_initializer: Optional[Sequence[SparseTensorProto]] = None,
) -> GraphProto:
"""Construct a GraphProto
Args:
nodes: list of NodeProto
name (string): graph name
inputs: list of ValueInfoProto
outputs: list of ValueInfoProto
initializer: list of TensorProto
doc_string (string): graph documentation
value_info: list of ValueInfoProto
sparse_initializer: list of SparseTensorProto
Returns:
GraphProto
"""
if initializer is None:
initializer = []
if sparse_initializer is None:
sparse_initializer = []
if value_info is None:
value_info = []
graph = GraphProto()
graph.node.extend(nodes)
graph.name = name
graph.input.extend(inputs)
graph.output.extend(outputs)
graph.initializer.extend(initializer)
graph.sparse_initializer.extend(sparse_initializer)
graph.value_info.extend(value_info)
if doc_string:
graph.doc_string = doc_string
return graph
def make_opsetid(domain: str, version: int) -> OperatorSetIdProto:
"""Construct an OperatorSetIdProto.
Args:
domain (string): The domain of the operator set id
version (integer): Version of operator set id
Returns:
OperatorSetIdProto
"""
opsetid = OperatorSetIdProto()
opsetid.domain = domain
opsetid.version = version
return opsetid
def make_function(
domain: str,
fname: str,
inputs: Sequence[str],
outputs: Sequence[str],
nodes: Sequence[NodeProto],
opset_imports: Sequence[OperatorSetIdProto],
attributes: Optional[Sequence[str]] = None,
attribute_protos: Optional[Sequence[AttributeProto]] = None,
doc_string: Optional[str] = None,
overload: Optional[str] = None,
value_info: Optional[Sequence[ValueInfoProto]] = None,
) -> FunctionProto:
if attributes is None:
attributes = []
if attribute_protos is None:
attribute_protos = []
if value_info is None:
value_info = []
f = FunctionProto()
f.domain = domain
f.name = fname
f.input.extend(inputs)
f.output.extend(outputs)
f.node.extend(nodes)
f.opset_import.extend(opset_imports)
f.attribute.extend(attributes)
f.attribute_proto.extend(attribute_protos)
if doc_string:
f.doc_string = doc_string
if overload is not None:
f.overload = overload
f.value_info.extend(value_info)
return f
def make_model(graph: GraphProto, **kwargs: Any) -> ModelProto:
"""Construct a ModelProto
Args:
graph (GraphProto): *make_graph* returns
**kwargs: any attribute to add to the returned instance
Returns:
ModelProto
"""
model = ModelProto()
# Touch model.ir_version so it is stored as the version from which it is
# generated.
model.ir_version = IR_VERSION
model.graph.CopyFrom(graph)
opset_imports: Optional[Sequence[OperatorSetIdProto]] = None
opset_imports = kwargs.pop("opset_imports", None) # type: ignore
if opset_imports is not None:
model.opset_import.extend(opset_imports)
else:
# Default import
imp = model.opset_import.add()
imp.version = defs.onnx_opset_version()
functions: Optional[Sequence[FunctionProto]] = None
functions = kwargs.pop("functions", None) # type: ignore
if functions is not None:
model.functions.extend(functions)
for k, v in kwargs.items():
# TODO: Does this work with repeated fields?
setattr(model, k, v)
return model
# An extension of make_model that infers an IR_VERSION for the model,
# if not specified, using a best-effort-basis.
def make_model_gen_version(graph: GraphProto, **kwargs: Any) -> ModelProto:
ir_version_field = "ir_version"
if ir_version_field not in kwargs:
opset_imports_field = "opset_imports"
imports = kwargs.get(opset_imports_field, [])
kwargs[ir_version_field] = find_min_ir_version_for(imports)
return make_model(graph, **kwargs)
def set_metadata_props(
proto: Union[
ModelProto, GraphProto, FunctionProto, NodeProto, TensorProto, ValueInfoProto
],
dict_value: Dict[str, str],
) -> None:
del proto.metadata_props[:]
for k, v in dict_value.items():
entry = proto.metadata_props.add()
entry.key = k
entry.value = v
def set_model_props(model: ModelProto, dict_value: Dict[str, str]) -> None:
set_metadata_props(model, dict_value)
def split_complex_to_pairs(ca: Sequence[np.complex64]) -> Sequence[int]:
return [
(ca[i // 2].real if (i % 2 == 0) else ca[i // 2].imag) # type: ignore[misc]
for i in range(len(ca) * 2)
]
# convert a float32 value to a bfloat16 (as int)
# By default, this conversion rounds-to-nearest-even and supports NaN
# Setting `truncate` to True enables a simpler conversion. In this mode the
# conversion is performed by simply dropping the 2 least significant bytes of
# the significand. In this mode an error of up to 1 bit may be introduced and
# preservation of NaN values is not be guaranteed.
def float32_to_bfloat16(fval: float, truncate: bool = False) -> int:
ival = int.from_bytes(struct.pack("<f", fval), "little")
if truncate:
return ival >> 16
# NaN requires at least 1 significand bit set
if isnan(fval):
return 0x7FC0 # sign=0, exp=all-ones, sig=0b1000000
# drop bottom 16-bits
# round remaining bits using round-to-nearest-even
rounded = ((ival >> 16) & 1) + 0x7FFF
return (ival + rounded) >> 16
def float32_to_float8e4m3( # noqa: PLR0911
fval: float,
scale: float = 1.0,
fn: bool = True,
uz: bool = False,
saturate: bool = True,
) -> int:
"""Convert a float32 value to a float8, e4m3 (as int).
See :ref:`onnx-detail-float8` for technical details.
Args:
fval: float to convert
scale: scale, divide *fval* by *scale* before casting it
fn: no infinite values
uz: no negative zero
saturate: if True, any value out of range included inf becomes
the maximum value, otherwise, it becomes NaN. The
description of operator Cast fully describes the
differences.
Returns:
converted float
"""
if not fn:
raise NotImplementedError(
"float32_to_float8e4m3 not implemented with fn=False."
)
x = fval / scale
b = int.from_bytes(struct.pack("<f", np.float32(x)), "little")
ret = (b & 0x80000000) >> 24 # sign
if uz:
if (b & 0x7FC00000) == 0x7FC00000: # noqa: PLR2004
return 0x80
if np.isinf(x):
if saturate:
return ret | 127
return 0x80
e = (b & 0x7F800000) >> 23 # exponent
m = b & 0x007FFFFF # mantissa
if e < 116: # noqa: PLR2004
ret = 0
elif e < 120: # noqa: PLR2004
# denormalized number
ex = e - 119
if ex >= -2: # noqa: PLR2004
ret |= 1 << (2 + ex)
ret |= m >> (21 - ex)
elif m > 0:
ret |= 1
else:
ret = 0
mask = 1 << (20 - ex)
if m & mask and (
ret & 1
or m & (mask - 1) > 0
or (m & mask and m & (mask << 1) and m & (mask - 1) == 0)
):
# rounding
ret += 1
elif e < 135: # noqa: PLR2004
# normalized number
ex = e - 119 # 127 - 8
if ex == 0:
ret |= 0x4
ret |= m >> 21
else:
ret |= ex << 3
ret |= m >> 20
if m & 0x80000 and ((m & 0x100000) or (m & 0x7FFFF)):
if (ret & 0x7F) < 0x7F: # noqa: PLR2004
# rounding
ret += 1
elif not saturate:
return 0x80
elif saturate:
ret |= 0x7F # 01111110
else:
ret = 0x80
return int(ret)
else:
if (b & 0x7FC00000) == 0x7FC00000: # noqa: PLR2004
return 0x7F | ret
if np.isinf(x):
if saturate:
return ret | 126
return 0x7F | ret
e = (b & 0x7F800000) >> 23 # exponent
m = b & 0x007FFFFF # mantissa
if e != 0:
if e < 117: # noqa: PLR2004
pass
elif e < 121: # noqa: PLR2004
# denormalized number
ex = e - 120
if ex >= -2: # noqa: PLR2004
ret |= 1 << (2 + ex)
ret |= m >> (21 - ex)
elif m > 0:
ret |= 1
mask = 1 << (20 - ex)
if m & mask and (
ret & 1
or m & (mask - 1) > 0
or (m & mask and m & (mask << 1) and m & (mask - 1) == 0)
):
# rounding
ret += 1
elif e < 136: # noqa: PLR2004
# normalized number
ex = e - 120
if ex == 0:
ret |= 0x4
ret |= m >> 21
else:
ret |= ex << 3
ret |= m >> 20
if (ret & 0x7F) == 0x7F: # noqa: PLR2004
ret &= 0xFE
if (m & 0x80000) and ((m & 0x100000) or (m & 0x7FFFF)):
if (ret & 0x7F) < 0x7E: # noqa: PLR2004
# rounding
ret += 1
elif not saturate:
ret |= 0x7F
elif saturate:
ret |= 126 # 01111110
else:
ret |= 0x7F
return int(ret)
def float32_to_float8e5m2( # noqa: PLR0911
fval: float,
scale: float = 1.0,
fn: bool = False,
uz: bool = False,
saturate: bool = True,
) -> int:
"""Convert a float32 value to a float8, e5m2 (as int).
Args:
fval: float to convert
scale: scale, divide *fval* by *scale* before casting it
fn: no infinite values
uz: no negative zero
saturate: if True, any value out of range included inf becomes
the maximum value, otherwise, it becomes NaN. The
description of operator Cast fully describes the
differences.
Returns:
converted float
"""
x = fval / scale
b = int.from_bytes(struct.pack("<f", np.float32(x)), "little")
ret = (b & 0x80000000) >> 24 # sign
if fn and uz:
if (b & 0x7FC00000) == 0x7FC00000: # noqa: PLR2004
return 0x80
if (b & 0x7FFFFFFF) == 0x7F800000: # noqa: PLR2004
# inf
if saturate:
return ret | 0x7F
return 0x80
e = (b & 0x7F800000) >> 23 # exponent
m = b & 0x007FFFFF # mantissa
if e < 109: # noqa: PLR2004
ret = 0
elif e < 112: # noqa: PLR2004
# denormalized number
ex = e - 111
if ex >= -1:
ret |= 1 << (1 + ex)
ret |= m >> (22 - ex)
elif m > 0:
ret |= 1
else:
ret = 0
mask = 1 << (21 - ex)
if m & mask and (
ret & 1
or m & (mask - 1) > 0
or (m & mask and m & (mask << 1) and m & (mask - 1) == 0)
):
# rounding
ret += 1
elif e < 143: # noqa: PLR2004
# normalized number
ex = e - 111
ret |= ex << 2
ret |= m >> 21
if m & 0x100000 and ((m & 0xFFFFF) or (m & 0x200000)):
if (ret & 0x7F) < 0x7F: # noqa: PLR2004
# rounding
ret += 1
elif not saturate:
ret = 0x80
elif e == 255 and m == 0: # inf # noqa: PLR2004
ret = 0x80
elif saturate:
ret |= 0x7F # last possible number
else:
ret = 0x80
return int(ret)
elif not fn and not uz:
if (b & 0x7FC00000) == 0x7FC00000: # noqa: PLR2004
return 0x7F | ret
if np.isinf(x):
if saturate:
return 0x7B | ret
return 0x7C | ret
e = (b & 0x7F800000) >> 23 # exponent
m = b & 0x007FFFFF # mantissa
if e != 0:
if e < 110: # noqa: PLR2004
pass
elif e < 113: # noqa: PLR2004
# denormalized number
ex = e - 112
if ex >= -1:
ret |= 1 << (1 + ex)
ret |= m >> (22 - ex)
elif m > 0:
ret |= 1
mask = 1 << (21 - ex)
if m & mask and (
ret & 1
or m & (mask - 1) > 0
or (m & mask and m & (mask << 1) and m & (mask - 1) == 0)
):
# rounding
ret += 1
elif e < 143: # noqa: PLR2004
# normalized number
ex = e - 112
ret |= ex << 2
ret |= m >> 21
if m & 0x100000 and ((m & 0xFFFFF) or (m & 0x200000)):
if (ret & 0x7F) < 0x7B: # noqa: PLR2004
# rounding
ret += 1
elif saturate:
ret |= 0x7B
else:
ret |= 0x7C
elif saturate:
ret |= 0x7B
else:
ret |= 0x7C
return int(ret)
else:
raise NotImplementedError("fn and uz must be both False or True.")
def pack_float32_to_4bit(
array: Union[np.ndarray, Sequence], signed: bool
) -> np.ndarray:
"""Convert an array of float32 value to a 4bit data-type and pack every two concecutive elements in a byte.
See :ref:`onnx-detail-int4` for technical details.
Args:
array: array of float to convert and pack
signed: Whether the 4 bit variant is signed or unsigned
Returns:
Packed array with size `ceil(farray.size/2)` (single dimension).
"""
if not isinstance(array, np.ndarray):
array = np.asarray(array, dtype=np.float32)
array_flat = array.ravel()
is_odd_volume = np.prod(array.shape) % 2 == 1
if is_odd_volume:
array_flat = np.append(array_flat, np.array([0]))
single_func = lambda x, y: subbyte.float32x2_to_4bitx2(x, y, signed) # noqa: E731
func = np.frompyfunc(single_func, 2, 1)
arr = func(array_flat[0::2], array_flat[1::2])
return arr.astype(np.uint8) # type: ignore[no-any-return]
def make_tensor(
name: str, data_type: int, dims: Sequence[int], vals: Any, raw: bool = False
) -> TensorProto:
"""Make a TensorProto with specified arguments. If raw is False, this
function will choose the corresponding proto field to store the
values based on data_type. If raw is True, use "raw_data" proto
field to store the values, and values should be of type bytes in
this case.
Args:
name (string): tensor name
data_type (int): a value such as onnx.TensorProto.FLOAT
dims (List[int]): shape
vals: values
raw (bool): if True, vals contains the serialized content of the tensor,
otherwise, vals should be a list of values of the type defined by *data_type*
Returns:
TensorProto
"""
tensor = TensorProto()
tensor.data_type = data_type
tensor.name = name
if data_type == TensorProto.STRING and raw:
raise TypeError("Can not use raw_data to store string type.")
np_dtype = tensor_dtype_to_np_dtype(data_type)
# Check number of vals specified equals tensor size
expected_size = 1
if raw:
# NumPy doesn't have BFLOAT16. TENSOR_TYPE_MAP maps it to float32, which has the wrong itemsize.
if data_type == TensorProto.BFLOAT16:
expected_size = 2
elif data_type in (
TensorProto.FLOAT8E4M3FN,
TensorProto.FLOAT8E4M3FNUZ,
TensorProto.FLOAT8E5M2,
TensorProto.FLOAT8E5M2FNUZ,
):
expected_size = 1
# NumPy doesn't have INT4. It is packed in couples to UINT8 buffers.
elif data_type in (TensorProto.UINT4, TensorProto.INT4):
expected_size = 0.5 # type: ignore[assignment]
else:
expected_size = np_dtype.itemsize
if type(vals) is np.ndarray and len(vals.shape) > 1:
vals = vals.flatten()
for d in dims:
expected_size *= d
if len(vals) != expected_size:
# padding of half a byte is acceptable for 4bit types
if not (
data_type in (TensorProto.UINT4, TensorProto.INT4)
and len(vals) == expected_size + 0.5
):
raise ValueError(
f"Number of values does not match tensor's size. Expected {expected_size}, but it is {len(vals)}. "
)
if raw:
tensor.raw_data = vals
else:
if data_type in (TensorProto.COMPLEX64, TensorProto.COMPLEX128):
vals = split_complex_to_pairs(vals)
elif data_type == TensorProto.FLOAT16:
vals = (
np.array(vals).astype(np_dtype).view(dtype=np.uint16).flatten().tolist()
)
elif data_type in (
TensorProto.BFLOAT16,
TensorProto.FLOAT8E4M3FN,
TensorProto.FLOAT8E4M3FNUZ,
TensorProto.FLOAT8E5M2,
TensorProto.FLOAT8E5M2FNUZ,
):
fcast = {
TensorProto.BFLOAT16: float32_to_bfloat16,
TensorProto.FLOAT8E4M3FN: float32_to_float8e4m3,
TensorProto.FLOAT8E4M3FNUZ: lambda *args: float32_to_float8e4m3( # type: ignore[misc]
*args, uz=True
),
TensorProto.FLOAT8E5M2: float32_to_float8e5m2,
TensorProto.FLOAT8E5M2FNUZ: lambda *args: float32_to_float8e5m2( # type: ignore[misc]
*args, fn=True, uz=True
),
}[
data_type # type: ignore[index]
]
vals = list(
map( # type: ignore[call-overload]
fcast,
np.array(vals).astype(np_dtype).flatten().tolist(),
)
)
elif data_type in (
TensorProto.UINT4,
TensorProto.INT4,
):
signed = data_type == TensorProto.INT4
vals = (
pack_float32_to_4bit(vals, signed=signed)
.astype(np_dtype)
.flatten()
.tolist()
)
elif data_type == TensorProto.BOOL:
vals = np.array(vals).astype(int)
elif data_type == TensorProto.STRING:
vals = np.array(vals).astype(bytes)
field = tensor_dtype_to_field(data_type)
getattr(tensor, field).extend(vals)
tensor.dims.extend(dims)
return tensor
def make_sparse_tensor(
values: TensorProto, indices: TensorProto, dims: Sequence[int]
) -> SparseTensorProto:
"""Construct a SparseTensorProto
Args:
values (TensorProto): the values
indices (TensorProto): the indices
dims: the shape
Returns:
SparseTensorProto
"""
sparse = SparseTensorProto()
sparse.values.CopyFrom(values)
sparse.indices.CopyFrom(indices)
sparse.dims.extend(dims)
return sparse
def make_sequence(
name: str,
elem_type: SequenceProto.DataType,
values: Sequence[Any],
) -> SequenceProto:
"""Make a Sequence with specified value arguments."""
sequence = SequenceProto()
sequence.name = name
sequence.elem_type = elem_type
if elem_type == SequenceProto.UNDEFINED:
return sequence
if elem_type == SequenceProto.TENSOR:
attribute = sequence.tensor_values
elif elem_type == SequenceProto.SPARSE_TENSOR:
attribute = sequence.sparse_tensor_values # type: ignore[assignment]
elif elem_type == SequenceProto.SEQUENCE:
attribute = sequence.sequence_values # type: ignore[assignment]
elif elem_type == SequenceProto.MAP:
attribute = sequence.map_values # type: ignore[assignment]
elif elem_type == OptionalProto.OPTIONAL:
attribute = sequence.optional_values # type: ignore[assignment]
else:
raise TypeError("The element type in the input sequence is not supported.")
attribute.extend(values)
return sequence
def make_map(
name: str, key_type: int, keys: List[Any], values: SequenceProto
) -> MapProto:
"""Make a Map with specified key-value pair arguments.
Criteria for conversion:
- Keys and Values must have the same number of elements
- Every key in keys must be of the same type
- Every value in values must be of the same type
"""
map_proto = MapProto()
valid_key_int_types = [
TensorProto.INT8,
TensorProto.INT16,
TensorProto.INT32,
TensorProto.INT64,
TensorProto.UINT8,
TensorProto.UINT16,
TensorProto.UINT32,
TensorProto.UINT64,
]
map_proto.name = name
map_proto.key_type = key_type
if key_type == TensorProto.STRING:
map_proto.string_keys.extend(keys)
elif key_type in valid_key_int_types:
map_proto.keys.extend(keys)
map_proto.values.CopyFrom(values)
return map_proto
def make_optional(
name: str,
elem_type: OptionalProto.DataType,
value: Optional[Any],
) -> OptionalProto:
"""Make an Optional with specified value arguments."""
optional = OptionalProto()
optional.name = name
optional.elem_type = elem_type
if elem_type == OptionalProto.UNDEFINED:
return optional
if elem_type == OptionalProto.TENSOR:
attribute = optional.tensor_value
elif elem_type == OptionalProto.SPARSE_TENSOR:
attribute = optional.sparse_tensor_value # type: ignore[assignment]
elif elem_type == OptionalProto.SEQUENCE:
attribute = optional.sequence_value # type: ignore[assignment]
elif elem_type == OptionalProto.MAP:
attribute = optional.map_value # type: ignore[assignment]
elif elem_type == OptionalProto.OPTIONAL:
attribute = optional.optional_value # type: ignore[assignment]
else:
raise TypeError("The element type in the input optional is not supported.")
attribute.CopyFrom(value) # type: ignore[arg-type]
return optional
def _to_bytes(value: Union[str, bytes]) -> bytes:
"""Coerce a string (or bytes) value into UTF-8 bytes."""
return value if isinstance(value, bytes) else value.encode("utf-8")
def make_attribute(
key: str,
value: Any,
doc_string: Optional[str] = None,
attr_type: Optional[int] = None,
) -> AttributeProto:
"""Makes an AttributeProto based on the value type."""
attr = AttributeProto()
attr.name = key
if doc_string:
attr.doc_string = doc_string
# Singular cases
if isinstance(value, numbers.Integral):
attr.i = int(value)
attr.type = AttributeProto.INT
elif isinstance(value, numbers.Real):
attr.f = float(value)
attr.type = AttributeProto.FLOAT
elif isinstance(value, (str, bytes)):
# Encode strings into utf-8
attr.s = _to_bytes(value)
attr.type = AttributeProto.STRING
elif isinstance(value, TensorProto):
attr.t.CopyFrom(value)
attr.type = AttributeProto.TENSOR
elif isinstance(value, SparseTensorProto):
attr.sparse_tensor.CopyFrom(value)
attr.type = AttributeProto.SPARSE_TENSOR
elif isinstance(value, GraphProto):
attr.g.CopyFrom(value)
attr.type = AttributeProto.GRAPH
elif isinstance(value, TypeProto):
attr.tp.CopyFrom(value)
attr.type = AttributeProto.TYPE_PROTO
# Iterable cases
elif isinstance(value, collections.abc.Iterable):
value = list(value)
if len(value) == 0 and attr_type is None:
raise ValueError(
f"Could not infer attribute `{key}` type from empty iterator"
)
if attr_type is None:
types = {type(v) for v in value}
for exp_t, exp_enum in (
(numbers.Integral, AttributeProto.INTS),
(numbers.Real, AttributeProto.FLOATS),
((str, bytes), AttributeProto.STRINGS),
(TensorProto, AttributeProto.TENSORS),
(SparseTensorProto, AttributeProto.SPARSE_TENSORS),
(GraphProto, AttributeProto.GRAPHS),
(TypeProto, AttributeProto.TYPE_PROTOS),
):
if all(issubclass(t, exp_t) for t in types): # type: ignore[arg-type]
attr_type = exp_enum
break
if attr_type is None:
raise ValueError(
"Could not infer the attribute type from the elements of the passed Iterable value."
)
if attr_type == AttributeProto.INTS:
attr.ints.extend(value)
attr.type = AttributeProto.INTS
elif attr_type == AttributeProto.FLOATS:
attr.floats.extend(value)
attr.type = AttributeProto.FLOATS
elif attr_type == AttributeProto.STRINGS:
attr.strings.extend(_to_bytes(v) for v in value)
attr.type = AttributeProto.STRINGS
elif attr_type == AttributeProto.TENSORS:
attr.tensors.extend(value)
attr.type = AttributeProto.TENSORS
elif attr_type == AttributeProto.SPARSE_TENSORS:
attr.sparse_tensors.extend(value)
attr.type = AttributeProto.SPARSE_TENSORS
elif attr_type == AttributeProto.GRAPHS:
attr.graphs.extend(value)
attr.type = AttributeProto.GRAPHS
elif attr_type == AttributeProto.TYPE_PROTOS:
attr.type_protos.extend(value)
attr.type = AttributeProto.TYPE_PROTOS
else:
raise AssertionError() # Should not reach since `ValueError` must be raised in attr_type checking
else:
raise TypeError(f"'{value}' is not an accepted attribute value.")
if attr_type is not None and attr.type != attr_type:
raise TypeError(
f"Inferred attribute type '{_attr_type_to_str(attr.type)}'({attr.type}) mismatched with specified type '{_attr_type_to_str(attr_type)}'({attr_type})"
)
return attr
def make_attribute_ref(
name: str, attr_type: AttributeProto.AttributeType, doc_string: Optional[str] = None
) -> AttributeProto:
"""Make an AttributeProto holding a reference to the parent function's attribute of given name and type."""
attr = AttributeProto()
attr.name = name
attr.type = attr_type
if doc_string:
attr.doc_string = doc_string
return attr
def get_attribute_value(attr: AttributeProto) -> Any: # noqa: PLR0911
if attr.ref_attr_name:
raise ValueError(f"Cannot get value of reference attribute: {attr}")
if attr.type == AttributeProto.FLOAT:
return attr.f
if attr.type == AttributeProto.INT:
return attr.i
if attr.type == AttributeProto.STRING:
return attr.s
if attr.type == AttributeProto.TENSOR:
return attr.t
if attr.type == AttributeProto.SPARSE_TENSOR:
return attr.sparse_tensor
if attr.type == AttributeProto.GRAPH:
return attr.g
if attr.type == AttributeProto.TYPE_PROTO:
return attr.tp
if attr.type == AttributeProto.FLOATS:
return list(attr.floats)
if attr.type == AttributeProto.INTS:
return list(attr.ints)
if attr.type == AttributeProto.STRINGS:
return list(attr.strings)
if attr.type == AttributeProto.TENSORS:
return list(attr.tensors)
if attr.type == AttributeProto.SPARSE_TENSORS:
return list(attr.sparse_tensors)
if attr.type == AttributeProto.GRAPHS:
return list(attr.graphs)
if attr.type == AttributeProto.TYPE_PROTOS:
return list(attr.type_protos)
if attr.type == AttributeProto.UNDEFINED:
return None
raise ValueError(f"Unsupported ONNX attribute: {attr}")
def get_node_attr_value(node: NodeProto, attr_name: str) -> Any:
matching = [x for x in node.attribute if x.name == attr_name]
if len(matching) > 1:
raise ValueError(f"Node has multiple attributes with name {attr_name}")
if len(matching) < 1:
raise ValueError(f"Node has no attribute with name {attr_name}")
return get_attribute_value(matching[0])
def make_empty_tensor_value_info(name: str) -> ValueInfoProto:
value_info_proto = ValueInfoProto()
value_info_proto.name = name
return value_info_proto
def make_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Union[str, int, None]]],
shape_denotation: Optional[List[str]] = None,
) -> TypeProto:
"""Makes a Tensor TypeProto based on the data type and shape."""
type_proto = TypeProto()
tensor_type_proto = type_proto.tensor_type
tensor_type_proto.elem_type = elem_type
tensor_shape_proto = tensor_type_proto.shape
if shape is not None:
# You might think this is a no-op (extending a normal Python
# list by [] certainly is), but protobuf lists work a little
# differently; if a field is never set, it is omitted from the
# resulting protobuf; a list that is explicitly set to be
# empty will get an (empty) entry in the protobuf. This
# difference is visible to our consumers, so make sure we emit
# an empty shape!
tensor_shape_proto.dim.extend([])
if shape_denotation and len(shape_denotation) != len(shape):
raise ValueError(
"Invalid shape_denotation. Must be of the same length as shape."
)
for i, d in enumerate(shape):
dim = tensor_shape_proto.dim.add()
if d is None:
pass
elif isinstance(d, int):
dim.dim_value = d
elif isinstance(d, str):
dim.dim_param = d
else:
raise ValueError(
f"Invalid item in shape: {d}. Needs to be of int or str."
)
if shape_denotation:
dim.denotation = shape_denotation[i]
return type_proto
def make_tensor_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Union[str, int, None]]],
doc_string: str = "",
shape_denotation: Optional[List[str]] = None,
) -> ValueInfoProto:
"""Makes a ValueInfoProto based on the data type and shape."""
value_info_proto = ValueInfoProto()
value_info_proto.name = name
if doc_string:
value_info_proto.doc_string = doc_string
tensor_type_proto = make_tensor_type_proto(elem_type, shape, shape_denotation)
value_info_proto.type.CopyFrom(tensor_type_proto)
return value_info_proto
def make_sparse_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Union[str, int, None]]],
shape_denotation: Optional[List[str]] = None,
) -> TypeProto:
"""Makes a SparseTensor TypeProto based on the data type and shape."""
type_proto = TypeProto()
sparse_tensor_type_proto = type_proto.sparse_tensor_type
sparse_tensor_type_proto.elem_type = elem_type
sparse_tensor_shape_proto = sparse_tensor_type_proto.shape
if shape is not None:
# You might think this is a no-op (extending a normal Python
# list by [] certainly is), but protobuf lists work a little
# differently; if a field is never set, it is omitted from the
# resulting protobuf; a list that is explicitly set to be
# empty will get an (empty) entry in the protobuf. This
# difference is visible to our consumers, so make sure we emit
# an empty shape!
sparse_tensor_shape_proto.dim.extend([])
if shape_denotation and len(shape_denotation) != len(shape):
raise ValueError(
"Invalid shape_denotation. Must be of the same length as shape."
)
for i, d in enumerate(shape):
dim = sparse_tensor_shape_proto.dim.add()
if d is None:
pass
elif isinstance(d, int):
dim.dim_value = d
elif isinstance(d, str):
dim.dim_param = d
else:
raise ValueError(
f"Invalid item in shape: {d}. Needs to be of int or text."
)
if shape_denotation:
dim.denotation = shape_denotation[i]
return type_proto
def make_sparse_tensor_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Union[str, int, None]]],
doc_string: str = "",
shape_denotation: Optional[List[str]] = None,
) -> ValueInfoProto:
"""Makes a SparseTensor ValueInfoProto based on the data type and shape."""
value_info_proto = ValueInfoProto()
value_info_proto.name = name
if doc_string:
value_info_proto.doc_string = doc_string
sparse_tensor_type_proto = make_sparse_tensor_type_proto(
elem_type, shape, shape_denotation
)
value_info_proto.type.sparse_tensor_type.CopyFrom(
sparse_tensor_type_proto.sparse_tensor_type
)
return value_info_proto
def make_sequence_type_proto(
inner_type_proto: TypeProto,
) -> TypeProto:
"""Makes a sequence TypeProto."""
type_proto = TypeProto()
type_proto.sequence_type.elem_type.CopyFrom(inner_type_proto)
return type_proto
def make_optional_type_proto(
inner_type_proto: TypeProto,
) -> TypeProto:
"""Makes an optional TypeProto."""
type_proto = TypeProto()
type_proto.optional_type.elem_type.CopyFrom(inner_type_proto)
return type_proto
def make_map_type_proto(
key_type: int,
value_type: TypeProto,
) -> TypeProto:
"""Makes a map TypeProto."""
type_proto = TypeProto()
type_proto.map_type.key_type = key_type
type_proto.map_type.value_type.CopyFrom(value_type)
return type_proto
def make_value_info(
name: str,
type_proto: TypeProto,
doc_string: str = "",
) -> ValueInfoProto:
"""Makes a ValueInfoProto with the given type_proto."""
value_info_proto = ValueInfoProto()
value_info_proto.name = name
if doc_string:
value_info_proto.doc_string = doc_string
value_info_proto.type.CopyFrom(type_proto)
return value_info_proto
def _sanitize_str(s: Union[str, bytes]) -> str:
if isinstance(s, str):
sanitized = s
elif isinstance(s, bytes):
sanitized = s.decode("utf-8", errors="ignore")
else:
sanitized = str(s)
if len(sanitized) < 64: # noqa: PLR2004
return sanitized
return sanitized[:64] + f"...<+len={(len(sanitized) - 64)}>"
def make_tensor_sequence_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Union[str, int, None]]],
doc_string: str = "",
elem_shape_denotation: Optional[List[str]] = None,
) -> ValueInfoProto:
"""Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape."""
value_info_proto = ValueInfoProto()
value_info_proto.name = name
if doc_string:
value_info_proto.doc_string = doc_string
tensor_type_proto = make_tensor_type_proto(elem_type, shape, elem_shape_denotation)
sequence_type_proto = make_sequence_type_proto(tensor_type_proto)
value_info_proto.type.sequence_type.CopyFrom(sequence_type_proto.sequence_type)
return value_info_proto
def printable_attribute(
attr: AttributeProto, subgraphs: bool = False
) -> Union[str, Tuple[str, List[GraphProto]]]:
content = []
content.append(attr.name)
content.append("=")
def str_float(f: float) -> str:
# NB: Different Python versions print different numbers of trailing
# decimals, specifying this explicitly keeps it consistent for all
# versions
return f"{f:.15g}"
def str_int(i: int) -> str:
return str(i)
_T = TypeVar("_T")
def str_list(str_elem: Callable[[_T], str], xs: Sequence[_T]) -> str:
return "[" + ", ".join(map(str_elem, xs)) + "]"
# for now, this logic should continue to work as long as we are running on a proto3
# implementation. If/when we switch to proto3, we will need to use attr.type
# To support printing subgraphs, if we find a graph attribute, print out
# its name here and pass the graph itself up to the caller for later
# printing.
graphs = []
if attr.HasField("f"):
content.append(str_float(attr.f))
elif attr.HasField("i"):
content.append(str_int(attr.i))
elif attr.HasField("s"):
# TODO: Bit nervous about Python 2 / Python 3 determinism implications
content.append(repr(_sanitize_str(attr.s)))
elif attr.HasField("t"):
if len(attr.t.dims) > 0:
content.append("<Tensor>")
else:
# special case to print scalars
field = tensor_dtype_to_field(attr.t.data_type)
content.append(f"<Scalar Tensor {getattr(attr.t, field)}>")
elif attr.HasField("g"):
content.append(f"<graph {attr.g.name}>")
graphs.append(attr.g)
elif attr.HasField("tp"):
content.append(f"<Type Proto {attr.tp}>")
elif attr.floats:
content.append(str_list(str_float, attr.floats))
elif attr.ints:
content.append(str_list(str_int, attr.ints))
elif attr.strings:
# TODO: Bit nervous about Python 2 / Python 3 determinism implications
content.append(str(list(map(_sanitize_str, attr.strings))))
elif attr.tensors:
content.append("[<Tensor>, ...]")
elif attr.type_protos:
content.append("[")
for i, tp in enumerate(attr.type_protos):
comma = "," if i != len(attr.type_protos) - 1 else ""
content.append(f"<Type Proto {tp}>{comma}")
content.append("]")
elif attr.graphs:
content.append("[")
for i, g in enumerate(attr.graphs):
comma = "," if i != len(attr.graphs) - 1 else ""
content.append(f"<graph {g.name}>{comma}")
content.append("]")
graphs.extend(attr.graphs)
else:
content.append("<Unknown>")
if subgraphs:
return " ".join(content), graphs
return " ".join(content)
def printable_dim(dim: TensorShapeProto.Dimension) -> str:
which = dim.WhichOneof("value")
if which is None:
return "?"
return str(getattr(dim, which))
def printable_type(t: TypeProto) -> str:
if t.WhichOneof("value") == "tensor_type":
s = TensorProto.DataType.Name(t.tensor_type.elem_type)
if t.tensor_type.HasField("shape"):
if len(t.tensor_type.shape.dim):
s += str(", " + "x".join(map(printable_dim, t.tensor_type.shape.dim)))
else:
s += ", scalar"
return s # type: ignore[no-any-return]
if t.WhichOneof("value") is None:
return ""
return f"Unknown type {t.WhichOneof('value')}"
def printable_value_info(v: ValueInfoProto) -> str:
s = f"%{v.name}"
if v.type:
s = f"{s}[{printable_type(v.type)}]"
return s
def printable_tensor_proto(t: TensorProto) -> str:
s = f"%{t.name}["
s += TensorProto.DataType.Name(t.data_type)
if t.dims is not None:
if len(t.dims):
s += str(", " + "x".join(map(str, t.dims)))
else:
s += ", scalar"
s += "]"
return s
def printable_node(
node: NodeProto, prefix: str = "", subgraphs: bool = False
) -> Union[str, Tuple[str, List[GraphProto]]]:
content = []
if len(node.output):
content.append(", ".join([f"%{name}" for name in node.output]))
content.append("=")
# To deal with nested graphs
graphs: List[GraphProto] = []
printed_attrs = []
for attr in node.attribute:
if subgraphs:
printed_attr_subgraphs = printable_attribute(attr, subgraphs)
if not isinstance(printed_attr_subgraphs[1], list):
raise TypeError(
f"printed_attr_subgraphs[1] must be an instance of {list}."
)
graphs.extend(printed_attr_subgraphs[1])
printed_attrs.append(printed_attr_subgraphs[0])
else:
printed = printable_attribute(attr)
if not isinstance(printed, str):
raise TypeError(f"printed must be an instance of {str}.")
printed_attrs.append(printed)
printed_attributes = ", ".join(sorted(printed_attrs))
printed_inputs = ", ".join([f"%{name}" for name in node.input])
if node.attribute:
content.append(f"{node.op_type}[{printed_attributes}]({printed_inputs})")
else:
content.append(f"{node.op_type}({printed_inputs})")
if subgraphs:
return prefix + " ".join(content), graphs
return prefix + " ".join(content)
def printable_graph(graph: GraphProto, prefix: str = "") -> str:
"""Display a GraphProto as a string.
Args:
graph (GraphProto): the graph to display
prefix (string): prefix of every line
Returns:
string
"""
content = []
indent = prefix + " "
# header
header = ["graph", graph.name]
initializers = {t.name for t in graph.initializer}
if len(graph.input):
header.append("(")
in_strs = [] # required inputs
in_with_init_strs = (
[]
) # optional inputs with initializer providing default value
for inp in graph.input:
if inp.name not in initializers:
in_strs.append(printable_value_info(inp))
else:
in_with_init_strs.append(printable_value_info(inp))
if in_strs:
content.append(prefix + " ".join(header))
header = []
for line in in_strs:
content.append(prefix + " " + line)
header.append(")")
if in_with_init_strs:
header.append("optional inputs with matching initializers (")
content.append(prefix + " ".join(header))
header = []
for line in in_with_init_strs:
content.append(prefix + " " + line)
header.append(")")
# from IR 4 onwards an initializer is not required to have a matching graph input
# so output the name, type and shape of those as well
if len(in_with_init_strs) < len(initializers):
graph_inputs = {i.name for i in graph.input}
init_strs = [
printable_tensor_proto(i)
for i in graph.initializer
if i.name not in graph_inputs
]
header.append("initializers (")
content.append(prefix + " ".join(header))
header = []
for line in init_strs:
content.append(prefix + " " + line)
header.append(")")
header.append("{")
content.append(prefix + " ".join(header))
graphs: List[GraphProto] = []
# body
for node in graph.node:
contents_subgraphs = printable_node(node, indent, subgraphs=True)
if not isinstance(contents_subgraphs[1], list):
raise TypeError(f"contents_subgraphs[1] must be an instance of {list}.")
content.append(contents_subgraphs[0])
graphs.extend(contents_subgraphs[1])
# tail
tail = ["return"]
if len(graph.output):
tail.append(", ".join([f"%{out.name}" for out in graph.output]))
content.append(indent + " ".join(tail))
# closing bracket
content.append(prefix + "}")
for g in graphs:
content.append("\n" + printable_graph(g))
return "\n".join(content)
def strip_doc_string(proto: google.protobuf.message.Message) -> None:
"""Empties `doc_string` field on any nested protobuf messages"""
if not isinstance(proto, google.protobuf.message.Message):
raise TypeError(
f"proto must be an instance of {google.protobuf.message.Message}."
)
for descriptor in proto.DESCRIPTOR.fields:
if descriptor.name == "doc_string":
proto.ClearField(descriptor.name)
elif descriptor.type == descriptor.TYPE_MESSAGE:
if descriptor.label == descriptor.LABEL_REPEATED:
for x in getattr(proto, descriptor.name):
strip_doc_string(x)
elif proto.HasField(descriptor.name):
strip_doc_string(getattr(proto, descriptor.name))
def make_training_info(
algorithm: GraphProto,
algorithm_bindings: AssignmentBindingType,
initialization: Optional[GraphProto],
initialization_bindings: Optional[AssignmentBindingType],
) -> TrainingInfoProto:
training_info = TrainingInfoProto()
training_info.algorithm.CopyFrom(algorithm)
for k, v in algorithm_bindings:
binding = training_info.update_binding.add()
binding.key = k
binding.value = v
if initialization:
training_info.initialization.CopyFrom(initialization)
if initialization_bindings:
for k, v in initialization_bindings:
binding = training_info.initialization_binding.add()
binding.key = k
binding.value = v
return training_info
# Following functions are used for mapping
def tensor_dtype_to_np_dtype(tensor_dtype: int) -> np.dtype:
"""Convert a TensorProto's data_type to corresponding numpy dtype. It can be used while making tensor.
Args:
tensor_dtype: TensorProto's data_type
Returns:
numpy's data_type
"""
return mapping.TENSOR_TYPE_MAP[tensor_dtype].np_dtype
def tensor_dtype_to_storage_tensor_dtype(tensor_dtype: int) -> int:
"""Convert a TensorProto's data_type to corresponding data_type for storage.
Args:
tensor_dtype: TensorProto's data_type
Returns:
data_type for storage
"""
return mapping.TENSOR_TYPE_MAP[tensor_dtype].storage_dtype
def tensor_dtype_to_string(tensor_dtype: int) -> str:
"""Get the name of given TensorProto's data_type.
Args:
tensor_dtype: TensorProto's data_type
Returns:
the name of data_type
"""
return mapping.TENSOR_TYPE_MAP[tensor_dtype].name
def tensor_dtype_to_field(tensor_dtype: int) -> str:
"""Convert a TensorProto's data_type to corresponding field name for storage. It can be used while making tensors.
Args:
tensor_dtype: TensorProto's data_type
Returns:
field name
"""
return mapping._STORAGE_TENSOR_TYPE_TO_FIELD[
mapping.TENSOR_TYPE_MAP[tensor_dtype].storage_dtype
]
def np_dtype_to_tensor_dtype(np_dtype: np.dtype) -> int:
"""Convert a numpy's dtype to corresponding tensor type. It can be used while converting numpy arrays to tensors.
Args:
np_dtype: numpy's data_type
Returns:
TensorsProto's data_type
"""
return cast(
int,
mapping._NP_TYPE_TO_TENSOR_TYPE[np_dtype],
)
def get_all_tensor_dtypes() -> KeysView[int]:
"""Get all tensor types from TensorProto.
Returns:
all tensor types from TensorProto
"""
return mapping.TENSOR_TYPE_MAP.keys()
_ATTRIBUTE_TYPE_TO_STR = {k: v for v, k in AttributeProto.AttributeType.items()}
def _attr_type_to_str(attr_type: int) -> str:
"""Convert AttributeProto type to string.
Args:
attr_type: AttributeProto type.
Returns:
String representing the supplied attr_type.
"""
if attr_type in AttributeProto.AttributeType.values():
return _ATTRIBUTE_TYPE_TO_STR[attr_type] # type: ignore[no-any-return]
return AttributeProto.AttributeType.keys()[0] # type: ignore[no-any-return]
|