File size: 43,668 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
// Copyright (c) ONNX Project Contributors
//
// SPDX-License-Identifier: Apache-2.0

#include "onnx/shape_inference/implementation.h"

#include <algorithm>
#include <fstream>
#include <list>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "onnx/checker.h"
#include "onnx/common/common.h"
#include "onnx/common/file_utils.h"
#include "onnx/defs/data_type_utils.h"
#include "onnx/proto_utils.h"
#include "onnx/shape_inference/attribute_binder.h"
#include "onnx/string_utils.h"

namespace ONNX_NAMESPACE {
namespace shape_inference {
namespace {

std::string GetValueCaseString(const TypeProto& type) {
  switch (type.value_case()) {
    case TypeProto::ValueCase::kTensorType:
      return "tensor_type";
    case TypeProto::ValueCase::kSequenceType:
      return "sequence_type";
    case TypeProto::ValueCase::kMapType:
      return "map_type";
    case TypeProto::ValueCase::kOptionalType:
      return "optional_type";
#ifdef ONNX_ML
    case TypeProto::ValueCase::kOpaqueType:
      return "opaque_type";
#endif
    case TypeProto::ValueCase::kSparseTensorType:
      return "sparse_tensor_type";
    case TypeProto::ValueCase::VALUE_NOT_SET:
      return "NOT_SET";
  }
  return ONNX_NAMESPACE::to_string(type.value_case());
}

std::string GetElemTypeString(const TypeProto_Tensor& type) {
#ifndef ONNX_USE_LITE_PROTO
  std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
  if (!type_str.empty()) {
    return type_str;
  }
#endif
  return ONNX_NAMESPACE::to_string(type.elem_type());
}

std::string GetElemTypeString(const TypeProto_SparseTensor& type) {
#ifndef ONNX_USE_LITE_PROTO
  std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
  if (!type_str.empty()) {
    return type_str;
  }
#endif
  return ONNX_NAMESPACE::to_string(type.elem_type());
}

inline bool IsOnnxDomainOp(const NodeProto& node, const std::string& op_type) {
  return (IsOnnxDomain(node.domain()) && (node.op_type() == op_type));
}

} // namespace

template <class T>
void CheckTensorShapesAndTypes(const T& inferred_type, const T& existing_type) {
  if (inferred_type.elem_type() != TensorProto::UNDEFINED && existing_type.elem_type() != TensorProto::UNDEFINED &&
      existing_type.elem_type() != inferred_type.elem_type()) {
    std::stringstream ss;
    ss << "Inferred elem type differs from existing elem type: (" << GetElemTypeString(inferred_type) << ") vs ("
       << GetElemTypeString(existing_type) << ")";
    fail_type_inference(ss.str());
  }

  if (!inferred_type.has_shape() || !existing_type.has_shape()) {
    return;
  }

  if (inferred_type.shape().dim_size() != existing_type.shape().dim_size()) {
    std::stringstream ss;
    ss << "Inferred shape and existing shape differ in rank: (" << inferred_type.shape().dim_size() << ") vs ("
       << existing_type.shape().dim_size() << ")";
    fail_shape_inference(ss.str());
  }

  for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
    const auto& inferred_dim = inferred_type.shape().dim(i);
    const auto& existing_dim = existing_type.shape().dim(i);
    if (inferred_dim.has_dim_value() && existing_dim.has_dim_value() &&
        inferred_dim.dim_value() != existing_dim.dim_value()) {
      std::stringstream ss;
      ss << "Inferred shape and existing shape differ in dimension " << i << ": (" << inferred_dim.dim_value()
         << ") vs (" << existing_dim.dim_value() << ")";
      fail_shape_inference(ss.str());
    }
  }
}

void checkShapesAndTypes(const TypeProto& inferred_type, const TypeProto& existing_type) {
  const auto inferred_value_case = inferred_type.value_case();
  const auto existing_value_case = existing_type.value_case();
  if (inferred_value_case == TypeProto::ValueCase::VALUE_NOT_SET ||
      existing_value_case == TypeProto::ValueCase::VALUE_NOT_SET) {
    // nothing to check; will assign inferredType to undefined existingType
    return;
  }
  if (inferred_value_case != existing_value_case) {
    fail_type_inference(
        "type case mismatch. existing=",
        GetValueCaseString(existing_type),
        " inferred=",
        GetValueCaseString(inferred_type));
  }

  if (inferred_value_case == TypeProto::kTensorType && existing_value_case == TypeProto::kTensorType) {
    CheckTensorShapesAndTypes(inferred_type.tensor_type(), existing_type.tensor_type());
  } else if (
      inferred_value_case == TypeProto::kSparseTensorType && existing_value_case == TypeProto::kSparseTensorType) {
    CheckTensorShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type.sparse_tensor_type());
  } else if (inferred_value_case == TypeProto::kSequenceType && existing_value_case == TypeProto::kSequenceType) {
    checkShapesAndTypes(inferred_type.sequence_type().elem_type(), existing_type.sequence_type().elem_type());
  } else if (inferred_value_case == TypeProto::kOptionalType && existing_value_case == TypeProto::kOptionalType) {
    checkShapesAndTypes(inferred_type.optional_type().elem_type(), existing_type.optional_type().elem_type());
  } else if (
      inferred_value_case == TypeProto::TypeProto::kMapType && existing_value_case == TypeProto::TypeProto::kMapType) {
    if (inferred_type.map_type().key_type() != existing_type.map_type().key_type()) {
      fail_type_inference(
          "key type mismatch from MapProto. existing=",
          Utils::DataTypeUtils::ToDataTypeString(existing_type.map_type().key_type()),
          " inferred=",
          Utils::DataTypeUtils::ToDataTypeString(inferred_type.map_type().key_type()));
    }
    checkShapesAndTypes(inferred_type.map_type().value_type(), existing_type.map_type().value_type());
  } else {
    fail_type_inference("type case unsupported. existing=", existing_value_case, " inferred=", inferred_value_case);
  }
}

void mergeShapesAndTypes(const TypeProto_Tensor& inferred_type, TypeProto_Tensor* existing_type) {
  if (existing_type->elem_type() == TensorProto::UNDEFINED) {
    existing_type->set_elem_type(inferred_type.elem_type());
  }

  if (!inferred_type.has_shape()) {
    return;
  }

  if (!existing_type->has_shape()) {
    *existing_type->mutable_shape() = inferred_type.shape();
    return;
  }

  for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
    const auto& inferred_dim = inferred_type.shape().dim(i);
    auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
    if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
      *existing_dim = inferred_dim;
    }
  }
}

void mergeShapesAndTypes(const TypeProto_SparseTensor& inferred_type, TypeProto_SparseTensor* existing_type) {
  if (existing_type->elem_type() == TensorProto::UNDEFINED) {
    existing_type->set_elem_type(inferred_type.elem_type());
  }

  if (!inferred_type.has_shape()) {
    return;
  }

  if (!existing_type->has_shape()) {
    *existing_type->mutable_shape() = inferred_type.shape();
    return;
  }

  for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
    const auto& inferred_dim = inferred_type.shape().dim(i);
    auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
    if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
      *existing_dim = inferred_dim;
    }
  }
}

void mergeShapesAndTypes(const TypeProto& inferred_type, TypeProto* existing_type) {
  // Check before merge
  checkShapesAndTypes(inferred_type, *existing_type);
  const auto inferred_val_case = inferred_type.value_case();
  if (inferred_val_case == TypeProto::kTensorType) {
    mergeShapesAndTypes(inferred_type.tensor_type(), existing_type->mutable_tensor_type());
  } else if (inferred_val_case == TypeProto::kSparseTensorType) {
    mergeShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type->mutable_sparse_tensor_type());
  } else if (inferred_val_case == TypeProto::kSequenceType) {
    mergeShapesAndTypes(
        inferred_type.sequence_type().elem_type(), existing_type->mutable_sequence_type()->mutable_elem_type());
  } else if (inferred_val_case == TypeProto::kOptionalType) {
    mergeShapesAndTypes(
        inferred_type.optional_type().elem_type(), existing_type->mutable_optional_type()->mutable_elem_type());
  } else if (inferred_val_case == TypeProto::kMapType) {
    if (existing_type->map_type().key_type() == TensorProto::UNDEFINED) {
      existing_type->mutable_map_type()->set_key_type(inferred_type.map_type().key_type());
    }
    mergeShapesAndTypes(inferred_type.map_type().value_type(), existing_type->mutable_map_type()->mutable_value_type());
  }
}

// TypeProto_Tensor or TypeProto_SparseTensor
template <typename TensorTypeProto>
void GenerateSymbolicShape(TensorTypeProto* inferred_type, SymbolTable& symbol_table) {
  if (!inferred_type->has_shape()) {
    return;
  }
  for (int i = 0; i < inferred_type->shape().dim_size(); ++i) {
    // set a symbol if it doesn't have dim_value and dim_param
    auto* dim = inferred_type->mutable_shape()->mutable_dim(i);
    if (!dim->has_dim_value() && !dim->has_dim_param()) {
      dim->set_dim_param(symbol_table.createNew());
    }
  }
}

void MaterializeSymbolicShape(TypeProto* inferred_type, SymbolTable& symbol_table) {
  const auto inferred_val_case = inferred_type->value_case();
  if (inferred_val_case == TypeProto::ValueCase::VALUE_NOT_SET) {
    return;
  }

  if (inferred_val_case == TypeProto::kTensorType) {
    GenerateSymbolicShape(inferred_type->mutable_tensor_type(), symbol_table);
  } else if (inferred_val_case == TypeProto::kSparseTensorType) {
    GenerateSymbolicShape(inferred_type->mutable_sparse_tensor_type(), symbol_table);
  } else if (inferred_val_case == TypeProto::kSequenceType) {
    MaterializeSymbolicShape(inferred_type->mutable_sequence_type()->mutable_elem_type(), symbol_table);
  } else if (inferred_val_case == TypeProto::kOptionalType) {
    MaterializeSymbolicShape(inferred_type->mutable_optional_type()->mutable_elem_type(), symbol_table);
  } else if (inferred_val_case == TypeProto::kMapType) {
    MaterializeSymbolicShape(inferred_type->mutable_map_type()->mutable_value_type(), symbol_table);
  } else {
    fail_shape_inference("type case unsupported for symbolic shape inference. inferred=", inferred_val_case);
  }
}

std::string GetFunctionIdentifier(const FunctionProto& function) {
  // Note: Models with IR version < 10 do not have the overload attribute.
  // However, that will be mapped to an empty identifier.
  std::string overload = function.overload();
  if (overload.empty()) {
    return function.domain() + ":" + function.name();
  }
  return function.domain() + ":" + function.name() + ":" + overload;
}

std::string GetFunctionIdentifier(const NodeProto& node) {
  // Note: Models with IR version < 10 do not have the overload attribute.
  // However, that will be mapped to an empty identifier.
  std::string overload = node.overload();
  if (overload.empty()) {
    return node.domain() + ":" + node.op_type();
  }
  return node.domain() + ":" + node.op_type() + ":" + overload;
}

// InferredTypes: abstracts the differences between FunctionProto and GraphProto
// for inference. For GraphProto, inferred types are stored in the GraphProto
// but FunctionProto does not have a place to store inferred types. So, we
// use a temporary vector (for the duration of inference) to store these.
class InferredTypes {
 public:
  explicit InferredTypes(GraphProto* graph = nullptr) : graph_ptr(graph) {}

  TypeProto* Add(const std::string& var_name, const TypeProto& type) {
    if (graph_ptr != nullptr) {
      auto* p = graph_ptr->add_value_info();
      p->set_name(var_name);
      *p->mutable_type() = type;
      return p->mutable_type();
    } else {
      auto* p = new TypeProto(type);
      types.push_back(p);
      return p;
    }
  }

  ~InferredTypes() {
    for (auto* p : types) {
      delete p;
    }
  }

 private:
  std::vector<TypeProto*> types;
  GraphProto* graph_ptr;
  ONNX_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(InferredTypes);
};

// Initialize a DataValueMap for a called function from the DataValueMap of the caller
void BindValuesOnCall(

    const DataValueMap& caller_map,

    const NodeProto& caller,

    DataValueMap& callee_map,

    const FunctionProto& callee) {
  auto num_inputs = (std::min)(caller.input_size(), callee.input_size());
  for (int i = 0; i < num_inputs; ++i) {
    const std::string& actual = caller.input(i);
    const std::string& formal = callee.input(i);
    if (!actual.empty()) {
      auto it = caller_map.find(actual);
      if (it != caller_map.end()) {
        callee_map[formal] = it->second;
      }
    }
  }
}

// Update a DataValueMap for a calling function from the DataValueMap of the callee
void BindValuesOnReturn(

    const DataValueMap& callee_map,

    const FunctionProto& callee,

    DataValueMap& caller_map,

    const NodeProto& caller) {
  auto num_outputs = (std::min)(caller.output_size(), callee.output_size());
  for (int i = 0; i < num_outputs; ++i) {
    const std::string& actual = caller.output(i);
    const std::string& formal = callee.output(i);
    if (!actual.empty()) {
      auto it = callee_map.find(formal);
      if (it != callee_map.end()) {
        caller_map[actual] = it->second;
      }
    }
  }
}

class ShapeInferenceImplBase {
 public:
  void UpdateType(const std::string& name, TypeProto* inferred_type) {
    if (inferred_type->value_case() == TypeProto::ValueCase::VALUE_NOT_SET) {
      return;
    }

    if (symbol_table) {
      MaterializeSymbolicShape(inferred_type, *symbol_table);
    }

    // Find any pre-existing type and shape info. If there is such,
    // then check for compatibility with the inferred
    // information. Otherwise, initialize it in an empty state.
    auto iter = value_types_by_name.find(name);
    if (iter != value_types_by_name.end()) {
      mergeShapesAndTypes(*inferred_type, iter->second);
    } else {
      value_types_by_name[name] = inferred_types.Add(name, *inferred_type);
      // For undefined output type, update both value_info and output for now
      // Update existing output with undefined type: assign inferred type to it
      iter = undefined_value_types_by_name.find(name);
      if (iter != undefined_value_types_by_name.end()) {
        *iter->second = *inferred_type;
      }
    }
  }

  void UpdateType(ValueInfoProto& valueInfo) {
    if (valueInfo.has_type()) {
      value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
    } else {
      undefined_value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
    }
  }

  template <typename T>
  void AddTemporaryConstant(const std::string& name, const T& vector) {
    input_data_by_name_holder[name] = ToTensor(vector);
    input_data_by_name[name] = &input_data_by_name_holder[name];
  }

  void ProcessConstant(const NodeProto& n) {
    if (IsOnnxDomainOp(n, "Constant") && n.output().size() == 1) {
      const std::string& output_name = n.output(0);
      for (const auto& attr : n.attribute()) {
        if (attr.name() == "value") {
          if (attr.type() == AttributeProto::TENSOR && attr.has_t()) {
            if (reuse_constant_tensors) {
              input_data_by_name[output_name] = &attr.t();
            } else {
              input_data_by_name_holder[output_name] = attr.t();
              input_data_by_name[output_name] = &input_data_by_name_holder[output_name];
            }
          } else if (attr.type() == AttributeProto::SPARSE_TENSOR && attr.has_sparse_tensor()) {
            if (reuse_constant_tensors) {
              input_sparse_data_by_name[output_name] = &attr.sparse_tensor();
            }
          }
        } else {
          switch (attr.type()) {
            case AttributeProto::INTS: {
              std::vector<int64_t> ints{attr.ints().begin(), attr.ints().end()};
              AddTemporaryConstant(output_name, ints);
              break;
            }
            case AttributeProto::INT: {
              std::vector<int64_t> ints({attr.i()});
              AddTemporaryConstant(output_name, ints);
              break;
            }
            case AttributeProto::FLOATS: {
              std::vector<float> floats{attr.floats().begin(), attr.floats().end()};
              AddTemporaryConstant(output_name, floats);
              break;
            }
            case AttributeProto::FLOAT: {
              std::vector<float> floats({attr.f()});
              AddTemporaryConstant(output_name, floats);
              break;
            }
            default:
              break;
          }
        }
      }
    }
  }

  void ProcessCall(const NodeProto& caller, const FunctionProto& callee, InferenceContext& ctx) {
    DataValueMap callee_value_map;
    if (generated_shape_data_by_name != nullptr) {
      BindValuesOnCall(*generated_shape_data_by_name, caller, callee_value_map, callee);
    }
    InferShapeForFunctionNode(
        callee, schema_registry, ctx, options, model_local_functions_map, symbol_table, &callee_value_map);
    if (generated_shape_data_by_name != nullptr) {
      BindValuesOnReturn(callee_value_map, callee, *generated_shape_data_by_name, caller);
    }
  }

  void Process(NodeProto& n) {
    // Resolve domain for node
    auto dit = opset_imports.find(n.domain());
    if (dit == opset_imports.end()) {
      // Both "" (ONNX_DOMAIN) and "ai.onnx" (AI_ONNX_DOMAIN) refer to the default ONNX domain
      if (n.domain() == ONNX_DOMAIN) {
        dit = opset_imports.find(AI_ONNX_DOMAIN);
      }
      if (dit == opset_imports.end()) {
        fail_type_inference(
            "Cannot infer type and shape for node name ",
            n.name(),
            ". No opset import for domain ",
            n.domain(),
            " optype ",
            n.op_type());
      }
    }
    auto domain_version = dit->second;
    const auto schema = schema_registry->GetSchema(n.op_type(), domain_version, n.domain());
    InferenceContextImpl ctx(

        n,

        value_types_by_name,

        input_data_by_name,

        input_sparse_data_by_name,

        options,

        generated_shape_data_by_name,

        &graph_inference_context);

    ONNX_TRY {
      if (schema) {
        if (schema->has_type_and_shape_inference_function()) {
          schema->GetTypeAndShapeInferenceFunction()(ctx);
        } else if (schema->HasFunction()) {
          ProcessCall(n, *(schema->GetFunction()), ctx);
        } // else: rely on schema->CheckInputOutputType() down below.
        // check type-constraints specified via type variables
        if (options.check_type) {
          schema->CheckInputOutputType(ctx);
        }
      } else if (model_local_functions_map.size() > 0) {
        auto iter = model_local_functions_map.find(GetFunctionIdentifier(n));
        if (iter != model_local_functions_map.end()) {
          ProcessCall(n, *(iter->second), ctx);
        } else {
          has_unsupported_op = true;
          return;
        }
      } else {
        has_unsupported_op = true;
        return;
      }
      for (int i = 0; i < n.output_size(); ++i) {
        // skip type and shape propagation for missing optional outputs.
        if (!n.output(i).empty())
          UpdateType(n.output(i), ctx.getOutputType(i));
      }
      // Constant values are tracked to improve inference/checking for subsequent nodes.
      ProcessConstant(n);
      // If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
      // to improve inference/checking for subsequent nodes.
      if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
        if (generated_shape_data_by_name == nullptr) {
          fail_shape_inference(
              "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
        }
        DataPropagationContextImpl data_propagation_ctx(

            n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
        schema->GetDataPropagationFunction()(data_propagation_ctx);
      }
    }
    ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
      ONNX_HANDLE_EXCEPTION([&]() {
        // Note: The following special handling is to accommodate custom-ops. Ideally, custom-ops
        // should be registered with a schema in the schema registry, allowing inference to handle
        // them. As things stand, this special handling is somewhat fragile and is not fully
        // general either. Eg., a custom-op suppresses error-messages for subsequent nodes, but
        // this does not work across graphs. If special handling is required, a user-option may
        // be a better way to do it. The fragility comes from the fact that the types of the
        // returned-values of the custom-op are unknown, and subsequent node-level inference
        // may fail because of this.
        if (!has_unsupported_op) {
          inference_errors.push_back(GetErrorWithNodeInfo(n, ex));
        }
      });
    }
    ONNX_CATCH(const std::runtime_error& err) {
      // TODO: Fix this. Unclear if this should be remapped to a shape inference error.
      // Need to rationalize the different types of exceptions that can be thrown.
      // See: https://github.com/onnx/onnx/pull/5519
      ONNX_HANDLE_EXCEPTION([&]() { fail_shape_inference(GetErrorWithNodeInfo(n, err)); });
    }
  }

  // TypeProto_Tensor or TypeProto_SparseTensor
  template <typename T>
  void ProcessInitializer(

      const std::string& name,

      const T& tensorValue,

      TypeProto& initializer_type,

      std::unordered_map<std::string, const T*>& map) {
    map[name] = &tensorValue;
    auto iter = value_types_by_name.find(name);
    // If it already exists in input, check input and initializer is sync
    // use shape info from input (input has priority over initializer)
    if (iter != value_types_by_name.end()) {
      checkShapesAndTypes(initializer_type, *iter->second);
      // CheckTensorShapesAndTypes(*initializer_tensor_type, *iter->second->mutable_tensor_type());
    }
    // Support IR>=4: some tensors can only exist in initializer and not in input
    // So shape_inference should make use of initializer shapes
    // Store initializer shape info in value_info as well
    else if (ir_version >= 4) {
      initializer_type_list.push_back(std::move(initializer_type));
      value_types_by_name[name] = &initializer_type_list.back();
    }
  }

  void Process(GraphProto& graph) {
    if (symbol_table) {
      TraverseGraphsToAddExistingSymbols(graph, *symbol_table);
    }
    for (auto& vi : *graph.mutable_value_info()) {
      UpdateType(vi);
    }
    for (auto& vi : *graph.mutable_input()) {
      UpdateType(vi);
    }
    for (auto& vi : *graph.mutable_output()) {
      UpdateType(vi);
    }
    for (const auto& tp : graph.initializer()) {
      TypeProto initializer_type;
      TypeProto_Tensor* initializer_tensor_type = initializer_type.mutable_tensor_type();
      initializer_tensor_type->set_elem_type(tp.data_type());
      // set the shape according to the initializer shape info
      auto* shape = initializer_tensor_type->mutable_shape();
      for (int i = 0; i < tp.dims_size(); ++i) {
        shape->add_dim()->set_dim_value(tp.dims(i));
      }
      ProcessInitializer(tp.name(), tp, initializer_type, input_data_by_name);
    }
    for (const auto& tp : graph.sparse_initializer()) {
      TypeProto initializer_type;
      auto* initializer_sparse_tensor_type = initializer_type.mutable_sparse_tensor_type();
      initializer_sparse_tensor_type->set_elem_type(tp.values().data_type());
      // set the shape according to the initializer shape info
      auto* shape = initializer_sparse_tensor_type->mutable_shape();
      for (int i = 0; i < tp.dims_size(); ++i) {
        shape->add_dim()->set_dim_value(tp.dims(i));
      }
      ProcessInitializer(tp.values().name(), tp, initializer_type, input_sparse_data_by_name);
    }
    for (auto& n : *graph.mutable_node()) {
      Process(n);
    }
  }

  void Process(const NodeProto& n, internal::AttributeBinder& attribute_binder) {
    NodeProto copy_n(n);
    attribute_binder.VisitNode(&copy_n);
    Process(copy_n);
  }

  void Process(const FunctionProto& func_proto, InferenceContext& ctx) {
    // Ensure Constant node tensor-attributes are copied
    bool old_reuse_constant_tensors = reuse_constant_tensors;
    reuse_constant_tensors = false;

    // Get a temporary tensor-shape map
    const int num_actual_inputs = static_cast<int>(ctx.getNumInputs());
    const auto num_func_inputs = func_proto.input_size();
    std::vector<TypeProto> types_cache(num_func_inputs);
    for (int i = 0; i < num_func_inputs; ++i) {
      auto& parameter_name = func_proto.input().Get(i);
      auto* type_ptr = (i < num_actual_inputs) ? ctx.getInputType(i) : nullptr;
      // nullptr is valid, and indicates a missing optional input
      if (type_ptr != nullptr) {
        // Use a temporary copy of original type.
        // TODO: investigate whether we can eliminate use of temporary copy
        types_cache[i] = *type_ptr;
        value_types_by_name[parameter_name] = &types_cache[i];
      } else
        value_types_by_name[parameter_name] = nullptr;
    }

    // Create a temporary initializer value map
    for (int i = 0; i < num_actual_inputs && i < num_func_inputs; ++i) {
      const TypeProto* type = ctx.getInputType(i);
      if (type != nullptr) {
        if (type->value_case() == TypeProto::kTensorType && ctx.getInputData(i) != nullptr) {
          input_data_by_name[func_proto.input().Get(i)] = ctx.getInputData(i);
        } else if (type->value_case() == TypeProto::kSparseTensorType && ctx.getInputSparseData(i) != nullptr) {
          input_sparse_data_by_name[func_proto.input().Get(i)] = ctx.getInputSparseData(i);
        }
      }
    }

    std::unordered_map<std::string, const AttributeProto*> attr_map;
    for (auto& attr : func_proto.attribute()) {
      if (ctx.getAttribute(attr) != nullptr) {
        attr_map[attr] = ctx.getAttribute(attr);
      }
    }

    for (auto& default_value : func_proto.attribute_proto()) {
      const std::string& name = default_value.name();
      const AttributeProto* value = ctx.getAttribute(name);
      attr_map[name] = (value != nullptr) ? value : &default_value;
    }

    internal::AttributeBinder attribute_binder(attr_map);
    for (auto& n : func_proto.node()) {
      Process(n, attribute_binder);
    }

    for (int i = 0; i < func_proto.output_size(); ++i) {
      const std::string& output_name = func_proto.output().Get(i);
      // Skip if no type inferred for the tensor
      auto iter = value_types_by_name.find(output_name);
      if (iter != value_types_by_name.cend()) {
        // Copy the type info to ctx
        // to pass back to main graph
        auto type_proto = ctx.getOutputType(i);
        type_proto->CopyFrom(*(iter->second));
      }
    }

    reuse_constant_tensors = old_reuse_constant_tensors;
  }

 public:
  ShapeInferenceImplBase(
      GraphProto* graph, // nullptr for FunctionProto inference
      const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name_in,
      const std::unordered_map<std::string, int>& opset_imports_in,
      const ShapeInferenceOptions& options_in,
      SymbolTable* symbol_table_in,
      const ModelLocalFunctionsMap& model_local_functions_map_in,
      const ISchemaRegistry* schema_registry_in = OpSchemaRegistry::Instance(),
      DataValueMap* generated_shape_data_by_name_in = nullptr,
      const int ir_version_in = IR_VERSION // default the latest one
      )
      : inferred_types(graph),
        value_types_by_name(outer_scope_value_types_by_name_in),
        opset_imports(opset_imports_in),
        options(options_in),
        symbol_table(symbol_table_in),
        model_local_functions_map(model_local_functions_map_in),
        schema_registry(schema_registry_in),
        generated_shape_data_by_name(generated_shape_data_by_name_in),
        ir_version(ir_version_in),
        graph_inference_context{
            value_types_by_name,
            opset_imports,
            symbol_table,
            model_local_functions_map,
            schema_registry,
            generated_shape_data_by_name,
            ir_version} {
    if (options.enable_data_propagation && generated_shape_data_by_name == nullptr) {
      fail_shape_inference(
          "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
    }
  }

  void FinalizeShapeInference() {
    auto& errors = getErrors();
    // Throw shape inference error if any. Error mode right now only supports 0 and 1.
    // When set to 0, any node level shape inference errors are not thrown. This is to support backward compatiblity
    // with 1.7 and earlier releases. When set to 1 it will throw all exceptions.
    // TODO: Add a more granular way for exception handling.
    if (!errors.empty() && options.error_mode > 0) {
      std::string full_errors = "Inference error(s): ";
      for (const std::string& error : inference_errors) {
        full_errors += error + "\n";
      }
      fail_shape_inference(full_errors);
    }
  }

  const std::vector<std::string>& getErrors() const {
    return inference_errors;
  }

 private:
  InferredTypes inferred_types;
  std::unordered_map<std::string, TypeProto*> value_types_by_name;
  const std::unordered_map<std::string, int>& opset_imports;

  const ShapeInferenceOptions& options;
  SymbolTable* symbol_table;
  const ModelLocalFunctionsMap& model_local_functions_map;
  const ISchemaRegistry* schema_registry;
  DataValueMap* generated_shape_data_by_name;
  int ir_version;
  GraphInferenceContext graph_inference_context;

  std::unordered_map<std::string, TypeProto*> undefined_value_types_by_name;
  std::unordered_map<std::string, const TensorProto*> input_data_by_name;
  std::unordered_map<std::string, TensorProto> input_data_by_name_holder;
  std::unordered_map<std::string, const SparseTensorProto*> input_sparse_data_by_name;

  bool has_unsupported_op = false;

  std::vector<std::string> inference_errors;

  std::list<TypeProto> initializer_type_list;

  // reuse_constant_tensors: controls whether we need to copy tensors occurring as attributes
  // in Constant nodes. We avoid it for inference for graphs, but must make a copy for functions.
  bool reuse_constant_tensors = true;
};

static void InferShapesImpl(

    GraphProto* g,

    const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name,

    const std::unordered_map<std::string, int>& opset_imports,

    const ShapeInferenceOptions& options,

    SymbolTable* symbol_table,

    const ModelLocalFunctionsMap& model_local_functions_map,

    const ISchemaRegistry* schema_registry = OpSchemaRegistry::Instance(),

    DataValueMap* generated_shape_data_by_name = nullptr,

    const int ir_version = IR_VERSION // default the latest one

) {
  DataValueMap empty;
  if (generated_shape_data_by_name == nullptr) {
    generated_shape_data_by_name = &empty;
  }
  ShapeInferenceImplBase base(

      g,

      outer_scope_value_types_by_name,

      opset_imports,

      options,

      symbol_table,

      model_local_functions_map,

      schema_registry,

      generated_shape_data_by_name,

      ir_version);
  base.Process(*g);
  base.FinalizeShapeInference();
}

// Either ModelProto or FunctionProto
template <class T>
std::unordered_map<std::string, int> GetOpsetImportsFromProto(const T& proto) {
  std::unordered_map<std::string, int> opset_imports;
  for (const auto& opset_import : proto.opset_import()) {
    opset_imports[opset_import.domain()] = static_cast<int>(opset_import.version());
  }
  return opset_imports;
}

void InferShapes(

    GraphProto* g,

    const std::unordered_map<std::string, int>& opset_imports,

    const ISchemaRegistry* schema_registry,

    const ShapeInferenceOptions& options,

    const std::unordered_map<std::string, const FunctionProto*>& model_local_functions) {
  SymbolTableImpl symbol_table;
  InferShapesImpl(
      g,
      std::unordered_map<std::string, TypeProto*>(0),
      opset_imports,
      options,
      &symbol_table,
      model_local_functions,
      schema_registry);
}

void InferShapes(

    ModelProto& m,

    const ISchemaRegistry* schema_registry,

    const ShapeInferenceOptions& options,

    DataValueMap* generated_shape_data_by_name) {
  auto opset_imports = GetOpsetImportsFromProto(m);
  SymbolTableImpl symbol_table;
  ModelLocalFunctionsMap model_local_functions_by_id;
  for (const auto& function_proto : m.functions()) {
    model_local_functions_by_id.insert({GetFunctionIdentifier(function_proto), &function_proto});
  }
  InferShapesImpl(
      m.mutable_graph(),
      std::unordered_map<std::string, TypeProto*>(0),
      opset_imports,
      options,
      &symbol_table,
      model_local_functions_by_id,
      schema_registry,
      generated_shape_data_by_name,
      m.ir_version());
}

void InferShapes(

    const std::string& model_path,

    const std::string& save_path,

    const ISchemaRegistry* schema_registry,

    const ShapeInferenceOptions& options,

    DataValueMap* generated_shape_data_by_name) {
  ModelProto model;
  LoadProtoFromPath(model_path, model);
  InferShapes(model, schema_registry, options, generated_shape_data_by_name);
  // Save the inferred model to the original model path
  // Use SerializeToString instead of SerializeToOstream due to LITE_PROTO
  std::fstream output(save_path, std::ios::out | std::ios::trunc | std::ios::binary);
  std::string model_string;
  ONNX_TRY {
    model.SerializeToString(&model_string);
    output << model_string;
  }
  ONNX_CATCH(...) {
    fail_check("Unable to save inferred model to the target path:", save_path);
  }
}

// Infer shape for functions
void InferShapeForFunctionNode(

    const FunctionProto& func_proto,

    const std::unordered_map<std::string, int>& func_opset_imports,

    const ISchemaRegistry* schema_registry,

    InferenceContext& ctx,

    const ShapeInferenceOptions& options,

    const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,

    SymbolTable* symbol_table,

    DataValueMap* generated_shape_data_by_name) {
  ShapeInferenceImplBase base(

      nullptr, // no graph

      {}, // outer_scope_value_types_by_name

      func_opset_imports,

      options,

      symbol_table,

      model_local_functions_map,

      schema_registry,

      generated_shape_data_by_name);
  base.Process(func_proto, ctx);
  base.FinalizeShapeInference();
}

void InferShapeForFunctionNode(

    const FunctionProto& function_proto,

    const ISchemaRegistry* schema_registry,

    InferenceContext& ctx,

    const ShapeInferenceOptions& options,

    const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,

    SymbolTable* symbol_table,

    DataValueMap* generated_shape_data_by_name) {
  auto opset_imports = GetOpsetImportsFromProto(function_proto);
  InferShapeForFunctionNode(
      function_proto,
      opset_imports,
      schema_registry,
      ctx,
      options,
      model_local_functions_map,
      symbol_table,
      generated_shape_data_by_name);
}

struct FunctionInferenceContext : public InferenceContext {
  FunctionInferenceContext(
      const FunctionProto& func_proto,
      const std::vector<TypeProto>& input_types,
      const std::vector<AttributeProto>& attributes,
      const ShapeInferenceOptions& options)
      : input_types_(input_types), options_(options) {
    for (const auto& attr : attributes) {
      attributesByName_[attr.name()] = &attr;
    }
    auto num_outputs = func_proto.output_size();
    for (int i = 0; i < num_outputs; i++) {
      output_types_.push_back(TypeProto());
    }
  }

  const AttributeProto* getAttribute(const std::string& name) const override {
    auto iter = attributesByName_.find(name);
    if (iter == attributesByName_.end()) {
      return nullptr;
    } else {
      return iter->second;
    }
  }
  size_t getNumInputs() const override {
    return input_types_.size();
  }

  size_t getNumOutputs() const override {
    return output_types_.size();
  }

  const TypeProto* getInputType(size_t index) const override {
    // We should return nullptr for missing optional parameters.
    // An uninitialized TypeProto() is used for missing optional parameters, and
    // is mapped to a nullptr here.
    if (index >= input_types_.size())
      return nullptr;
    if (input_types_[index].value_case() == TypeProto::ValueCase::VALUE_NOT_SET)
      return nullptr;
    return &input_types_[index];
  }

  TypeProto* getOutputType(size_t index) override {
    return (index < output_types_.size()) ? &output_types_[index] : nullptr;
  }

  GraphInferencer* getGraphAttributeInferencer(const std::string& attribute_name) override {
    ONNX_UNUSED_PARAMETER(attribute_name); // This method is unused for function-type-inference.
    return nullptr;
  }

  const TensorProto* getInputData(size_t index) const override {
    ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
    return nullptr;
  }

  const SparseTensorProto* getInputSparseData(size_t index) const override {
    ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
    return nullptr;
  }

  const TensorShapeProto* getSymbolicInput(size_t index) const override {
    ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of data-propagation.
    return nullptr;
  }

  std::vector<TypeProto> popOutputTypes() {
    return std::move(output_types_);
  }

 private:
  const std::vector<TypeProto>& input_types_;
  std::vector<TypeProto> output_types_;
  std::unordered_map<std::string, const AttributeProto*> attributesByName_;
  ShapeInferenceOptions options_;
};

std::vector<TypeProto> InferFunctionOutputTypes(

    const FunctionProto& function_proto,

    const std::vector<TypeProto>& input_types,

    const std::vector<AttributeProto>& attributes) {
  // TODO: if it is desirable for infer_function_output_types to provide check_type, strict_mode, data_prop,
  // we can add them to the Python API. For now we just assume the default options.
  ShapeInferenceOptions options{true, 1, false};
  FunctionInferenceContext ctx(function_proto, input_types, attributes, options);
  auto opset_imports = GetOpsetImportsFromProto(function_proto);
  ShapeInferenceImplBase base(

      nullptr, // no graph

      {}, // outer_scope_value_types_by_name

      opset_imports,

      options,

      /*symbol_table*/ nullptr,

      /*model_local_functions_map*/ {},

      /*schema_registry*/ OpSchemaRegistry::Instance(),

      /*generated_shape_data_by_name*/ nullptr);
  base.Process(function_proto, ctx);
  base.FinalizeShapeInference();
  return ctx.popOutputTypes();
}

std::vector<const TypeProto*> GraphInferencerImpl::doInferencing(

    const std::vector<const TypeProto*>& input_types,

    const std::vector<const TensorProto*>& input_data) {
  SymbolTable* symbol_table = context_->symbol_table;
  int num_inputs = int(input_types.size());
  std::unordered_set<std::string> initializer_name_set;
  for (const auto& tp : g_->initializer()) {
    initializer_name_set.insert(tp.name());
  }

  if (context_->ir_version >= 4) {
    if (g_->input_size() != num_inputs) {
      fail_shape_inference("Graph has ", g_->input_size(), " inputs but ", num_inputs, " were provided");
    }
    for (int i = 0; i < g_->input_size(); ++i) {
      if (initializer_name_set.count(g_->input(i).name()) > 0) {
        fail_shape_inference(
            "Cannot use the same name as both a subgraph initializer and subgraph input: ", g_->input(i).name());
      }
    }
  } else {
    // IR < 4 requires all initializers to be optional inputs
    // So the number of graph input can be larger than the number of node input
    if (num_inputs > g_->input_size()) {
      fail_shape_inference(
          "Graph has ",
          g_->input_size(),
          " inputs but ",
          num_inputs,
          " were provided.",
          "The number of graph input cannot be smaller than the number of node input");
    } else if (num_inputs < g_->input_size()) {
      for (int i = 0; i < g_->input_size(); ++i) {
        if (i < num_inputs && initializer_name_set.count(g_->input(i).name()) > 0) {
          fail_shape_inference("Graph initializer names must appear after the actual inputs: ", g_->input(i).name());
        } else if (i >= num_inputs && initializer_name_set.count(g_->input(i).name()) == 0) {
          // Further check whether the additional input is in initializers
          fail_shape_inference("Cannot find missing input: ", g_->input(i).name(), "in initializers. ");
        }
      }
    }
  }

  for (int i = 0, end = num_inputs; i < end; ++i) {
    const TypeProto* inferred_input = input_types[i];

    if (!inferred_input)
      continue;

    TypeProto* graph_input = g_->mutable_input(i)->mutable_type();
    // Even if graphInput doesn't have defined type, it will assign inferredType to it
    mergeShapesAndTypes(*inferred_input, graph_input);

    if (symbol_table) {
      MaterializeSymbolicShape(graph_input, *symbol_table);
    }
  }

  // future: pass inputData into InferShapes either directly, or indirectly by
  // updating initializers that match subgraph inputs.
  (void)input_data;
  InferShapesImpl(
      g_,
      *context_->outer_scope_value_types_by_name, // never null
      context_->opset_imports,
      options_,
      symbol_table,
      context_->model_local_functions,
      context_->schema_registry,
      context_->generated_shape_data_by_name);

  std::vector<const TypeProto*> graph_output_types;
  graph_output_types.reserve(g_->output().size());
  for (const ValueInfoProto& output : g_->output()) {
    graph_output_types.push_back(&output.type());
  }

  return graph_output_types;
}

std::string GetErrorWithNodeInfo(const NodeProto& n, const std::runtime_error& err) {
  std::string op_name = n.has_name() ? (", node name: " + n.name()) : "";
  return "(op_type:" + n.op_type() + op_name + "): " + err.what();
}

void TraverseGraphsToAddExistingSymbols(const GraphProto& g, SymbolTable& symbol_table) {
  symbol_table.addFromGraph(g);
  for (const auto& n : g.node()) {
    for (auto& attr : n.attribute()) {
      if (attr.has_g()) {
        TraverseGraphsToAddExistingSymbols(attr.g(), symbol_table);
      }
    }
  }
}

} // namespace shape_inference
} // namespace ONNX_NAMESPACE