Spaces:
Sleeping
Sleeping
File size: 43,668 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 |
// Copyright (c) ONNX Project Contributors
//
// SPDX-License-Identifier: Apache-2.0
#include "onnx/shape_inference/implementation.h"
#include <algorithm>
#include <fstream>
#include <list>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "onnx/checker.h"
#include "onnx/common/common.h"
#include "onnx/common/file_utils.h"
#include "onnx/defs/data_type_utils.h"
#include "onnx/proto_utils.h"
#include "onnx/shape_inference/attribute_binder.h"
#include "onnx/string_utils.h"
namespace ONNX_NAMESPACE {
namespace shape_inference {
namespace {
std::string GetValueCaseString(const TypeProto& type) {
switch (type.value_case()) {
case TypeProto::ValueCase::kTensorType:
return "tensor_type";
case TypeProto::ValueCase::kSequenceType:
return "sequence_type";
case TypeProto::ValueCase::kMapType:
return "map_type";
case TypeProto::ValueCase::kOptionalType:
return "optional_type";
#ifdef ONNX_ML
case TypeProto::ValueCase::kOpaqueType:
return "opaque_type";
#endif
case TypeProto::ValueCase::kSparseTensorType:
return "sparse_tensor_type";
case TypeProto::ValueCase::VALUE_NOT_SET:
return "NOT_SET";
}
return ONNX_NAMESPACE::to_string(type.value_case());
}
std::string GetElemTypeString(const TypeProto_Tensor& type) {
#ifndef ONNX_USE_LITE_PROTO
std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
if (!type_str.empty()) {
return type_str;
}
#endif
return ONNX_NAMESPACE::to_string(type.elem_type());
}
std::string GetElemTypeString(const TypeProto_SparseTensor& type) {
#ifndef ONNX_USE_LITE_PROTO
std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
if (!type_str.empty()) {
return type_str;
}
#endif
return ONNX_NAMESPACE::to_string(type.elem_type());
}
inline bool IsOnnxDomainOp(const NodeProto& node, const std::string& op_type) {
return (IsOnnxDomain(node.domain()) && (node.op_type() == op_type));
}
} // namespace
template <class T>
void CheckTensorShapesAndTypes(const T& inferred_type, const T& existing_type) {
if (inferred_type.elem_type() != TensorProto::UNDEFINED && existing_type.elem_type() != TensorProto::UNDEFINED &&
existing_type.elem_type() != inferred_type.elem_type()) {
std::stringstream ss;
ss << "Inferred elem type differs from existing elem type: (" << GetElemTypeString(inferred_type) << ") vs ("
<< GetElemTypeString(existing_type) << ")";
fail_type_inference(ss.str());
}
if (!inferred_type.has_shape() || !existing_type.has_shape()) {
return;
}
if (inferred_type.shape().dim_size() != existing_type.shape().dim_size()) {
std::stringstream ss;
ss << "Inferred shape and existing shape differ in rank: (" << inferred_type.shape().dim_size() << ") vs ("
<< existing_type.shape().dim_size() << ")";
fail_shape_inference(ss.str());
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
const auto& existing_dim = existing_type.shape().dim(i);
if (inferred_dim.has_dim_value() && existing_dim.has_dim_value() &&
inferred_dim.dim_value() != existing_dim.dim_value()) {
std::stringstream ss;
ss << "Inferred shape and existing shape differ in dimension " << i << ": (" << inferred_dim.dim_value()
<< ") vs (" << existing_dim.dim_value() << ")";
fail_shape_inference(ss.str());
}
}
}
void checkShapesAndTypes(const TypeProto& inferred_type, const TypeProto& existing_type) {
const auto inferred_value_case = inferred_type.value_case();
const auto existing_value_case = existing_type.value_case();
if (inferred_value_case == TypeProto::ValueCase::VALUE_NOT_SET ||
existing_value_case == TypeProto::ValueCase::VALUE_NOT_SET) {
// nothing to check; will assign inferredType to undefined existingType
return;
}
if (inferred_value_case != existing_value_case) {
fail_type_inference(
"type case mismatch. existing=",
GetValueCaseString(existing_type),
" inferred=",
GetValueCaseString(inferred_type));
}
if (inferred_value_case == TypeProto::kTensorType && existing_value_case == TypeProto::kTensorType) {
CheckTensorShapesAndTypes(inferred_type.tensor_type(), existing_type.tensor_type());
} else if (
inferred_value_case == TypeProto::kSparseTensorType && existing_value_case == TypeProto::kSparseTensorType) {
CheckTensorShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type.sparse_tensor_type());
} else if (inferred_value_case == TypeProto::kSequenceType && existing_value_case == TypeProto::kSequenceType) {
checkShapesAndTypes(inferred_type.sequence_type().elem_type(), existing_type.sequence_type().elem_type());
} else if (inferred_value_case == TypeProto::kOptionalType && existing_value_case == TypeProto::kOptionalType) {
checkShapesAndTypes(inferred_type.optional_type().elem_type(), existing_type.optional_type().elem_type());
} else if (
inferred_value_case == TypeProto::TypeProto::kMapType && existing_value_case == TypeProto::TypeProto::kMapType) {
if (inferred_type.map_type().key_type() != existing_type.map_type().key_type()) {
fail_type_inference(
"key type mismatch from MapProto. existing=",
Utils::DataTypeUtils::ToDataTypeString(existing_type.map_type().key_type()),
" inferred=",
Utils::DataTypeUtils::ToDataTypeString(inferred_type.map_type().key_type()));
}
checkShapesAndTypes(inferred_type.map_type().value_type(), existing_type.map_type().value_type());
} else {
fail_type_inference("type case unsupported. existing=", existing_value_case, " inferred=", inferred_value_case);
}
}
void mergeShapesAndTypes(const TypeProto_Tensor& inferred_type, TypeProto_Tensor* existing_type) {
if (existing_type->elem_type() == TensorProto::UNDEFINED) {
existing_type->set_elem_type(inferred_type.elem_type());
}
if (!inferred_type.has_shape()) {
return;
}
if (!existing_type->has_shape()) {
*existing_type->mutable_shape() = inferred_type.shape();
return;
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
*existing_dim = inferred_dim;
}
}
}
void mergeShapesAndTypes(const TypeProto_SparseTensor& inferred_type, TypeProto_SparseTensor* existing_type) {
if (existing_type->elem_type() == TensorProto::UNDEFINED) {
existing_type->set_elem_type(inferred_type.elem_type());
}
if (!inferred_type.has_shape()) {
return;
}
if (!existing_type->has_shape()) {
*existing_type->mutable_shape() = inferred_type.shape();
return;
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
*existing_dim = inferred_dim;
}
}
}
void mergeShapesAndTypes(const TypeProto& inferred_type, TypeProto* existing_type) {
// Check before merge
checkShapesAndTypes(inferred_type, *existing_type);
const auto inferred_val_case = inferred_type.value_case();
if (inferred_val_case == TypeProto::kTensorType) {
mergeShapesAndTypes(inferred_type.tensor_type(), existing_type->mutable_tensor_type());
} else if (inferred_val_case == TypeProto::kSparseTensorType) {
mergeShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type->mutable_sparse_tensor_type());
} else if (inferred_val_case == TypeProto::kSequenceType) {
mergeShapesAndTypes(
inferred_type.sequence_type().elem_type(), existing_type->mutable_sequence_type()->mutable_elem_type());
} else if (inferred_val_case == TypeProto::kOptionalType) {
mergeShapesAndTypes(
inferred_type.optional_type().elem_type(), existing_type->mutable_optional_type()->mutable_elem_type());
} else if (inferred_val_case == TypeProto::kMapType) {
if (existing_type->map_type().key_type() == TensorProto::UNDEFINED) {
existing_type->mutable_map_type()->set_key_type(inferred_type.map_type().key_type());
}
mergeShapesAndTypes(inferred_type.map_type().value_type(), existing_type->mutable_map_type()->mutable_value_type());
}
}
// TypeProto_Tensor or TypeProto_SparseTensor
template <typename TensorTypeProto>
void GenerateSymbolicShape(TensorTypeProto* inferred_type, SymbolTable& symbol_table) {
if (!inferred_type->has_shape()) {
return;
}
for (int i = 0; i < inferred_type->shape().dim_size(); ++i) {
// set a symbol if it doesn't have dim_value and dim_param
auto* dim = inferred_type->mutable_shape()->mutable_dim(i);
if (!dim->has_dim_value() && !dim->has_dim_param()) {
dim->set_dim_param(symbol_table.createNew());
}
}
}
void MaterializeSymbolicShape(TypeProto* inferred_type, SymbolTable& symbol_table) {
const auto inferred_val_case = inferred_type->value_case();
if (inferred_val_case == TypeProto::ValueCase::VALUE_NOT_SET) {
return;
}
if (inferred_val_case == TypeProto::kTensorType) {
GenerateSymbolicShape(inferred_type->mutable_tensor_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kSparseTensorType) {
GenerateSymbolicShape(inferred_type->mutable_sparse_tensor_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kSequenceType) {
MaterializeSymbolicShape(inferred_type->mutable_sequence_type()->mutable_elem_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kOptionalType) {
MaterializeSymbolicShape(inferred_type->mutable_optional_type()->mutable_elem_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kMapType) {
MaterializeSymbolicShape(inferred_type->mutable_map_type()->mutable_value_type(), symbol_table);
} else {
fail_shape_inference("type case unsupported for symbolic shape inference. inferred=", inferred_val_case);
}
}
std::string GetFunctionIdentifier(const FunctionProto& function) {
// Note: Models with IR version < 10 do not have the overload attribute.
// However, that will be mapped to an empty identifier.
std::string overload = function.overload();
if (overload.empty()) {
return function.domain() + ":" + function.name();
}
return function.domain() + ":" + function.name() + ":" + overload;
}
std::string GetFunctionIdentifier(const NodeProto& node) {
// Note: Models with IR version < 10 do not have the overload attribute.
// However, that will be mapped to an empty identifier.
std::string overload = node.overload();
if (overload.empty()) {
return node.domain() + ":" + node.op_type();
}
return node.domain() + ":" + node.op_type() + ":" + overload;
}
// InferredTypes: abstracts the differences between FunctionProto and GraphProto
// for inference. For GraphProto, inferred types are stored in the GraphProto
// but FunctionProto does not have a place to store inferred types. So, we
// use a temporary vector (for the duration of inference) to store these.
class InferredTypes {
public:
explicit InferredTypes(GraphProto* graph = nullptr) : graph_ptr(graph) {}
TypeProto* Add(const std::string& var_name, const TypeProto& type) {
if (graph_ptr != nullptr) {
auto* p = graph_ptr->add_value_info();
p->set_name(var_name);
*p->mutable_type() = type;
return p->mutable_type();
} else {
auto* p = new TypeProto(type);
types.push_back(p);
return p;
}
}
~InferredTypes() {
for (auto* p : types) {
delete p;
}
}
private:
std::vector<TypeProto*> types;
GraphProto* graph_ptr;
ONNX_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(InferredTypes);
};
// Initialize a DataValueMap for a called function from the DataValueMap of the caller
void BindValuesOnCall(
const DataValueMap& caller_map,
const NodeProto& caller,
DataValueMap& callee_map,
const FunctionProto& callee) {
auto num_inputs = (std::min)(caller.input_size(), callee.input_size());
for (int i = 0; i < num_inputs; ++i) {
const std::string& actual = caller.input(i);
const std::string& formal = callee.input(i);
if (!actual.empty()) {
auto it = caller_map.find(actual);
if (it != caller_map.end()) {
callee_map[formal] = it->second;
}
}
}
}
// Update a DataValueMap for a calling function from the DataValueMap of the callee
void BindValuesOnReturn(
const DataValueMap& callee_map,
const FunctionProto& callee,
DataValueMap& caller_map,
const NodeProto& caller) {
auto num_outputs = (std::min)(caller.output_size(), callee.output_size());
for (int i = 0; i < num_outputs; ++i) {
const std::string& actual = caller.output(i);
const std::string& formal = callee.output(i);
if (!actual.empty()) {
auto it = callee_map.find(formal);
if (it != callee_map.end()) {
caller_map[actual] = it->second;
}
}
}
}
class ShapeInferenceImplBase {
public:
void UpdateType(const std::string& name, TypeProto* inferred_type) {
if (inferred_type->value_case() == TypeProto::ValueCase::VALUE_NOT_SET) {
return;
}
if (symbol_table) {
MaterializeSymbolicShape(inferred_type, *symbol_table);
}
// Find any pre-existing type and shape info. If there is such,
// then check for compatibility with the inferred
// information. Otherwise, initialize it in an empty state.
auto iter = value_types_by_name.find(name);
if (iter != value_types_by_name.end()) {
mergeShapesAndTypes(*inferred_type, iter->second);
} else {
value_types_by_name[name] = inferred_types.Add(name, *inferred_type);
// For undefined output type, update both value_info and output for now
// Update existing output with undefined type: assign inferred type to it
iter = undefined_value_types_by_name.find(name);
if (iter != undefined_value_types_by_name.end()) {
*iter->second = *inferred_type;
}
}
}
void UpdateType(ValueInfoProto& valueInfo) {
if (valueInfo.has_type()) {
value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
} else {
undefined_value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
}
}
template <typename T>
void AddTemporaryConstant(const std::string& name, const T& vector) {
input_data_by_name_holder[name] = ToTensor(vector);
input_data_by_name[name] = &input_data_by_name_holder[name];
}
void ProcessConstant(const NodeProto& n) {
if (IsOnnxDomainOp(n, "Constant") && n.output().size() == 1) {
const std::string& output_name = n.output(0);
for (const auto& attr : n.attribute()) {
if (attr.name() == "value") {
if (attr.type() == AttributeProto::TENSOR && attr.has_t()) {
if (reuse_constant_tensors) {
input_data_by_name[output_name] = &attr.t();
} else {
input_data_by_name_holder[output_name] = attr.t();
input_data_by_name[output_name] = &input_data_by_name_holder[output_name];
}
} else if (attr.type() == AttributeProto::SPARSE_TENSOR && attr.has_sparse_tensor()) {
if (reuse_constant_tensors) {
input_sparse_data_by_name[output_name] = &attr.sparse_tensor();
}
}
} else {
switch (attr.type()) {
case AttributeProto::INTS: {
std::vector<int64_t> ints{attr.ints().begin(), attr.ints().end()};
AddTemporaryConstant(output_name, ints);
break;
}
case AttributeProto::INT: {
std::vector<int64_t> ints({attr.i()});
AddTemporaryConstant(output_name, ints);
break;
}
case AttributeProto::FLOATS: {
std::vector<float> floats{attr.floats().begin(), attr.floats().end()};
AddTemporaryConstant(output_name, floats);
break;
}
case AttributeProto::FLOAT: {
std::vector<float> floats({attr.f()});
AddTemporaryConstant(output_name, floats);
break;
}
default:
break;
}
}
}
}
}
void ProcessCall(const NodeProto& caller, const FunctionProto& callee, InferenceContext& ctx) {
DataValueMap callee_value_map;
if (generated_shape_data_by_name != nullptr) {
BindValuesOnCall(*generated_shape_data_by_name, caller, callee_value_map, callee);
}
InferShapeForFunctionNode(
callee, schema_registry, ctx, options, model_local_functions_map, symbol_table, &callee_value_map);
if (generated_shape_data_by_name != nullptr) {
BindValuesOnReturn(callee_value_map, callee, *generated_shape_data_by_name, caller);
}
}
void Process(NodeProto& n) {
// Resolve domain for node
auto dit = opset_imports.find(n.domain());
if (dit == opset_imports.end()) {
// Both "" (ONNX_DOMAIN) and "ai.onnx" (AI_ONNX_DOMAIN) refer to the default ONNX domain
if (n.domain() == ONNX_DOMAIN) {
dit = opset_imports.find(AI_ONNX_DOMAIN);
}
if (dit == opset_imports.end()) {
fail_type_inference(
"Cannot infer type and shape for node name ",
n.name(),
". No opset import for domain ",
n.domain(),
" optype ",
n.op_type());
}
}
auto domain_version = dit->second;
const auto schema = schema_registry->GetSchema(n.op_type(), domain_version, n.domain());
InferenceContextImpl ctx(
n,
value_types_by_name,
input_data_by_name,
input_sparse_data_by_name,
options,
generated_shape_data_by_name,
&graph_inference_context);
ONNX_TRY {
if (schema) {
if (schema->has_type_and_shape_inference_function()) {
schema->GetTypeAndShapeInferenceFunction()(ctx);
} else if (schema->HasFunction()) {
ProcessCall(n, *(schema->GetFunction()), ctx);
} // else: rely on schema->CheckInputOutputType() down below.
// check type-constraints specified via type variables
if (options.check_type) {
schema->CheckInputOutputType(ctx);
}
} else if (model_local_functions_map.size() > 0) {
auto iter = model_local_functions_map.find(GetFunctionIdentifier(n));
if (iter != model_local_functions_map.end()) {
ProcessCall(n, *(iter->second), ctx);
} else {
has_unsupported_op = true;
return;
}
} else {
has_unsupported_op = true;
return;
}
for (int i = 0; i < n.output_size(); ++i) {
// skip type and shape propagation for missing optional outputs.
if (!n.output(i).empty())
UpdateType(n.output(i), ctx.getOutputType(i));
}
// Constant values are tracked to improve inference/checking for subsequent nodes.
ProcessConstant(n);
// If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
// to improve inference/checking for subsequent nodes.
if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
if (generated_shape_data_by_name == nullptr) {
fail_shape_inference(
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
}
DataPropagationContextImpl data_propagation_ctx(
n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
schema->GetDataPropagationFunction()(data_propagation_ctx);
}
}
ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
ONNX_HANDLE_EXCEPTION([&]() {
// Note: The following special handling is to accommodate custom-ops. Ideally, custom-ops
// should be registered with a schema in the schema registry, allowing inference to handle
// them. As things stand, this special handling is somewhat fragile and is not fully
// general either. Eg., a custom-op suppresses error-messages for subsequent nodes, but
// this does not work across graphs. If special handling is required, a user-option may
// be a better way to do it. The fragility comes from the fact that the types of the
// returned-values of the custom-op are unknown, and subsequent node-level inference
// may fail because of this.
if (!has_unsupported_op) {
inference_errors.push_back(GetErrorWithNodeInfo(n, ex));
}
});
}
ONNX_CATCH(const std::runtime_error& err) {
// TODO: Fix this. Unclear if this should be remapped to a shape inference error.
// Need to rationalize the different types of exceptions that can be thrown.
// See: https://github.com/onnx/onnx/pull/5519
ONNX_HANDLE_EXCEPTION([&]() { fail_shape_inference(GetErrorWithNodeInfo(n, err)); });
}
}
// TypeProto_Tensor or TypeProto_SparseTensor
template <typename T>
void ProcessInitializer(
const std::string& name,
const T& tensorValue,
TypeProto& initializer_type,
std::unordered_map<std::string, const T*>& map) {
map[name] = &tensorValue;
auto iter = value_types_by_name.find(name);
// If it already exists in input, check input and initializer is sync
// use shape info from input (input has priority over initializer)
if (iter != value_types_by_name.end()) {
checkShapesAndTypes(initializer_type, *iter->second);
// CheckTensorShapesAndTypes(*initializer_tensor_type, *iter->second->mutable_tensor_type());
}
// Support IR>=4: some tensors can only exist in initializer and not in input
// So shape_inference should make use of initializer shapes
// Store initializer shape info in value_info as well
else if (ir_version >= 4) {
initializer_type_list.push_back(std::move(initializer_type));
value_types_by_name[name] = &initializer_type_list.back();
}
}
void Process(GraphProto& graph) {
if (symbol_table) {
TraverseGraphsToAddExistingSymbols(graph, *symbol_table);
}
for (auto& vi : *graph.mutable_value_info()) {
UpdateType(vi);
}
for (auto& vi : *graph.mutable_input()) {
UpdateType(vi);
}
for (auto& vi : *graph.mutable_output()) {
UpdateType(vi);
}
for (const auto& tp : graph.initializer()) {
TypeProto initializer_type;
TypeProto_Tensor* initializer_tensor_type = initializer_type.mutable_tensor_type();
initializer_tensor_type->set_elem_type(tp.data_type());
// set the shape according to the initializer shape info
auto* shape = initializer_tensor_type->mutable_shape();
for (int i = 0; i < tp.dims_size(); ++i) {
shape->add_dim()->set_dim_value(tp.dims(i));
}
ProcessInitializer(tp.name(), tp, initializer_type, input_data_by_name);
}
for (const auto& tp : graph.sparse_initializer()) {
TypeProto initializer_type;
auto* initializer_sparse_tensor_type = initializer_type.mutable_sparse_tensor_type();
initializer_sparse_tensor_type->set_elem_type(tp.values().data_type());
// set the shape according to the initializer shape info
auto* shape = initializer_sparse_tensor_type->mutable_shape();
for (int i = 0; i < tp.dims_size(); ++i) {
shape->add_dim()->set_dim_value(tp.dims(i));
}
ProcessInitializer(tp.values().name(), tp, initializer_type, input_sparse_data_by_name);
}
for (auto& n : *graph.mutable_node()) {
Process(n);
}
}
void Process(const NodeProto& n, internal::AttributeBinder& attribute_binder) {
NodeProto copy_n(n);
attribute_binder.VisitNode(©_n);
Process(copy_n);
}
void Process(const FunctionProto& func_proto, InferenceContext& ctx) {
// Ensure Constant node tensor-attributes are copied
bool old_reuse_constant_tensors = reuse_constant_tensors;
reuse_constant_tensors = false;
// Get a temporary tensor-shape map
const int num_actual_inputs = static_cast<int>(ctx.getNumInputs());
const auto num_func_inputs = func_proto.input_size();
std::vector<TypeProto> types_cache(num_func_inputs);
for (int i = 0; i < num_func_inputs; ++i) {
auto& parameter_name = func_proto.input().Get(i);
auto* type_ptr = (i < num_actual_inputs) ? ctx.getInputType(i) : nullptr;
// nullptr is valid, and indicates a missing optional input
if (type_ptr != nullptr) {
// Use a temporary copy of original type.
// TODO: investigate whether we can eliminate use of temporary copy
types_cache[i] = *type_ptr;
value_types_by_name[parameter_name] = &types_cache[i];
} else
value_types_by_name[parameter_name] = nullptr;
}
// Create a temporary initializer value map
for (int i = 0; i < num_actual_inputs && i < num_func_inputs; ++i) {
const TypeProto* type = ctx.getInputType(i);
if (type != nullptr) {
if (type->value_case() == TypeProto::kTensorType && ctx.getInputData(i) != nullptr) {
input_data_by_name[func_proto.input().Get(i)] = ctx.getInputData(i);
} else if (type->value_case() == TypeProto::kSparseTensorType && ctx.getInputSparseData(i) != nullptr) {
input_sparse_data_by_name[func_proto.input().Get(i)] = ctx.getInputSparseData(i);
}
}
}
std::unordered_map<std::string, const AttributeProto*> attr_map;
for (auto& attr : func_proto.attribute()) {
if (ctx.getAttribute(attr) != nullptr) {
attr_map[attr] = ctx.getAttribute(attr);
}
}
for (auto& default_value : func_proto.attribute_proto()) {
const std::string& name = default_value.name();
const AttributeProto* value = ctx.getAttribute(name);
attr_map[name] = (value != nullptr) ? value : &default_value;
}
internal::AttributeBinder attribute_binder(attr_map);
for (auto& n : func_proto.node()) {
Process(n, attribute_binder);
}
for (int i = 0; i < func_proto.output_size(); ++i) {
const std::string& output_name = func_proto.output().Get(i);
// Skip if no type inferred for the tensor
auto iter = value_types_by_name.find(output_name);
if (iter != value_types_by_name.cend()) {
// Copy the type info to ctx
// to pass back to main graph
auto type_proto = ctx.getOutputType(i);
type_proto->CopyFrom(*(iter->second));
}
}
reuse_constant_tensors = old_reuse_constant_tensors;
}
public:
ShapeInferenceImplBase(
GraphProto* graph, // nullptr for FunctionProto inference
const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name_in,
const std::unordered_map<std::string, int>& opset_imports_in,
const ShapeInferenceOptions& options_in,
SymbolTable* symbol_table_in,
const ModelLocalFunctionsMap& model_local_functions_map_in,
const ISchemaRegistry* schema_registry_in = OpSchemaRegistry::Instance(),
DataValueMap* generated_shape_data_by_name_in = nullptr,
const int ir_version_in = IR_VERSION // default the latest one
)
: inferred_types(graph),
value_types_by_name(outer_scope_value_types_by_name_in),
opset_imports(opset_imports_in),
options(options_in),
symbol_table(symbol_table_in),
model_local_functions_map(model_local_functions_map_in),
schema_registry(schema_registry_in),
generated_shape_data_by_name(generated_shape_data_by_name_in),
ir_version(ir_version_in),
graph_inference_context{
value_types_by_name,
opset_imports,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name,
ir_version} {
if (options.enable_data_propagation && generated_shape_data_by_name == nullptr) {
fail_shape_inference(
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
}
}
void FinalizeShapeInference() {
auto& errors = getErrors();
// Throw shape inference error if any. Error mode right now only supports 0 and 1.
// When set to 0, any node level shape inference errors are not thrown. This is to support backward compatiblity
// with 1.7 and earlier releases. When set to 1 it will throw all exceptions.
// TODO: Add a more granular way for exception handling.
if (!errors.empty() && options.error_mode > 0) {
std::string full_errors = "Inference error(s): ";
for (const std::string& error : inference_errors) {
full_errors += error + "\n";
}
fail_shape_inference(full_errors);
}
}
const std::vector<std::string>& getErrors() const {
return inference_errors;
}
private:
InferredTypes inferred_types;
std::unordered_map<std::string, TypeProto*> value_types_by_name;
const std::unordered_map<std::string, int>& opset_imports;
const ShapeInferenceOptions& options;
SymbolTable* symbol_table;
const ModelLocalFunctionsMap& model_local_functions_map;
const ISchemaRegistry* schema_registry;
DataValueMap* generated_shape_data_by_name;
int ir_version;
GraphInferenceContext graph_inference_context;
std::unordered_map<std::string, TypeProto*> undefined_value_types_by_name;
std::unordered_map<std::string, const TensorProto*> input_data_by_name;
std::unordered_map<std::string, TensorProto> input_data_by_name_holder;
std::unordered_map<std::string, const SparseTensorProto*> input_sparse_data_by_name;
bool has_unsupported_op = false;
std::vector<std::string> inference_errors;
std::list<TypeProto> initializer_type_list;
// reuse_constant_tensors: controls whether we need to copy tensors occurring as attributes
// in Constant nodes. We avoid it for inference for graphs, but must make a copy for functions.
bool reuse_constant_tensors = true;
};
static void InferShapesImpl(
GraphProto* g,
const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name,
const std::unordered_map<std::string, int>& opset_imports,
const ShapeInferenceOptions& options,
SymbolTable* symbol_table,
const ModelLocalFunctionsMap& model_local_functions_map,
const ISchemaRegistry* schema_registry = OpSchemaRegistry::Instance(),
DataValueMap* generated_shape_data_by_name = nullptr,
const int ir_version = IR_VERSION // default the latest one
) {
DataValueMap empty;
if (generated_shape_data_by_name == nullptr) {
generated_shape_data_by_name = ∅
}
ShapeInferenceImplBase base(
g,
outer_scope_value_types_by_name,
opset_imports,
options,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name,
ir_version);
base.Process(*g);
base.FinalizeShapeInference();
}
// Either ModelProto or FunctionProto
template <class T>
std::unordered_map<std::string, int> GetOpsetImportsFromProto(const T& proto) {
std::unordered_map<std::string, int> opset_imports;
for (const auto& opset_import : proto.opset_import()) {
opset_imports[opset_import.domain()] = static_cast<int>(opset_import.version());
}
return opset_imports;
}
void InferShapes(
GraphProto* g,
const std::unordered_map<std::string, int>& opset_imports,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions) {
SymbolTableImpl symbol_table;
InferShapesImpl(
g,
std::unordered_map<std::string, TypeProto*>(0),
opset_imports,
options,
&symbol_table,
model_local_functions,
schema_registry);
}
void InferShapes(
ModelProto& m,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
DataValueMap* generated_shape_data_by_name) {
auto opset_imports = GetOpsetImportsFromProto(m);
SymbolTableImpl symbol_table;
ModelLocalFunctionsMap model_local_functions_by_id;
for (const auto& function_proto : m.functions()) {
model_local_functions_by_id.insert({GetFunctionIdentifier(function_proto), &function_proto});
}
InferShapesImpl(
m.mutable_graph(),
std::unordered_map<std::string, TypeProto*>(0),
opset_imports,
options,
&symbol_table,
model_local_functions_by_id,
schema_registry,
generated_shape_data_by_name,
m.ir_version());
}
void InferShapes(
const std::string& model_path,
const std::string& save_path,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
DataValueMap* generated_shape_data_by_name) {
ModelProto model;
LoadProtoFromPath(model_path, model);
InferShapes(model, schema_registry, options, generated_shape_data_by_name);
// Save the inferred model to the original model path
// Use SerializeToString instead of SerializeToOstream due to LITE_PROTO
std::fstream output(save_path, std::ios::out | std::ios::trunc | std::ios::binary);
std::string model_string;
ONNX_TRY {
model.SerializeToString(&model_string);
output << model_string;
}
ONNX_CATCH(...) {
fail_check("Unable to save inferred model to the target path:", save_path);
}
}
// Infer shape for functions
void InferShapeForFunctionNode(
const FunctionProto& func_proto,
const std::unordered_map<std::string, int>& func_opset_imports,
const ISchemaRegistry* schema_registry,
InferenceContext& ctx,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,
SymbolTable* symbol_table,
DataValueMap* generated_shape_data_by_name) {
ShapeInferenceImplBase base(
nullptr, // no graph
{}, // outer_scope_value_types_by_name
func_opset_imports,
options,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name);
base.Process(func_proto, ctx);
base.FinalizeShapeInference();
}
void InferShapeForFunctionNode(
const FunctionProto& function_proto,
const ISchemaRegistry* schema_registry,
InferenceContext& ctx,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,
SymbolTable* symbol_table,
DataValueMap* generated_shape_data_by_name) {
auto opset_imports = GetOpsetImportsFromProto(function_proto);
InferShapeForFunctionNode(
function_proto,
opset_imports,
schema_registry,
ctx,
options,
model_local_functions_map,
symbol_table,
generated_shape_data_by_name);
}
struct FunctionInferenceContext : public InferenceContext {
FunctionInferenceContext(
const FunctionProto& func_proto,
const std::vector<TypeProto>& input_types,
const std::vector<AttributeProto>& attributes,
const ShapeInferenceOptions& options)
: input_types_(input_types), options_(options) {
for (const auto& attr : attributes) {
attributesByName_[attr.name()] = &attr;
}
auto num_outputs = func_proto.output_size();
for (int i = 0; i < num_outputs; i++) {
output_types_.push_back(TypeProto());
}
}
const AttributeProto* getAttribute(const std::string& name) const override {
auto iter = attributesByName_.find(name);
if (iter == attributesByName_.end()) {
return nullptr;
} else {
return iter->second;
}
}
size_t getNumInputs() const override {
return input_types_.size();
}
size_t getNumOutputs() const override {
return output_types_.size();
}
const TypeProto* getInputType(size_t index) const override {
// We should return nullptr for missing optional parameters.
// An uninitialized TypeProto() is used for missing optional parameters, and
// is mapped to a nullptr here.
if (index >= input_types_.size())
return nullptr;
if (input_types_[index].value_case() == TypeProto::ValueCase::VALUE_NOT_SET)
return nullptr;
return &input_types_[index];
}
TypeProto* getOutputType(size_t index) override {
return (index < output_types_.size()) ? &output_types_[index] : nullptr;
}
GraphInferencer* getGraphAttributeInferencer(const std::string& attribute_name) override {
ONNX_UNUSED_PARAMETER(attribute_name); // This method is unused for function-type-inference.
return nullptr;
}
const TensorProto* getInputData(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
return nullptr;
}
const SparseTensorProto* getInputSparseData(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
return nullptr;
}
const TensorShapeProto* getSymbolicInput(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of data-propagation.
return nullptr;
}
std::vector<TypeProto> popOutputTypes() {
return std::move(output_types_);
}
private:
const std::vector<TypeProto>& input_types_;
std::vector<TypeProto> output_types_;
std::unordered_map<std::string, const AttributeProto*> attributesByName_;
ShapeInferenceOptions options_;
};
std::vector<TypeProto> InferFunctionOutputTypes(
const FunctionProto& function_proto,
const std::vector<TypeProto>& input_types,
const std::vector<AttributeProto>& attributes) {
// TODO: if it is desirable for infer_function_output_types to provide check_type, strict_mode, data_prop,
// we can add them to the Python API. For now we just assume the default options.
ShapeInferenceOptions options{true, 1, false};
FunctionInferenceContext ctx(function_proto, input_types, attributes, options);
auto opset_imports = GetOpsetImportsFromProto(function_proto);
ShapeInferenceImplBase base(
nullptr, // no graph
{}, // outer_scope_value_types_by_name
opset_imports,
options,
/*symbol_table*/ nullptr,
/*model_local_functions_map*/ {},
/*schema_registry*/ OpSchemaRegistry::Instance(),
/*generated_shape_data_by_name*/ nullptr);
base.Process(function_proto, ctx);
base.FinalizeShapeInference();
return ctx.popOutputTypes();
}
std::vector<const TypeProto*> GraphInferencerImpl::doInferencing(
const std::vector<const TypeProto*>& input_types,
const std::vector<const TensorProto*>& input_data) {
SymbolTable* symbol_table = context_->symbol_table;
int num_inputs = int(input_types.size());
std::unordered_set<std::string> initializer_name_set;
for (const auto& tp : g_->initializer()) {
initializer_name_set.insert(tp.name());
}
if (context_->ir_version >= 4) {
if (g_->input_size() != num_inputs) {
fail_shape_inference("Graph has ", g_->input_size(), " inputs but ", num_inputs, " were provided");
}
for (int i = 0; i < g_->input_size(); ++i) {
if (initializer_name_set.count(g_->input(i).name()) > 0) {
fail_shape_inference(
"Cannot use the same name as both a subgraph initializer and subgraph input: ", g_->input(i).name());
}
}
} else {
// IR < 4 requires all initializers to be optional inputs
// So the number of graph input can be larger than the number of node input
if (num_inputs > g_->input_size()) {
fail_shape_inference(
"Graph has ",
g_->input_size(),
" inputs but ",
num_inputs,
" were provided.",
"The number of graph input cannot be smaller than the number of node input");
} else if (num_inputs < g_->input_size()) {
for (int i = 0; i < g_->input_size(); ++i) {
if (i < num_inputs && initializer_name_set.count(g_->input(i).name()) > 0) {
fail_shape_inference("Graph initializer names must appear after the actual inputs: ", g_->input(i).name());
} else if (i >= num_inputs && initializer_name_set.count(g_->input(i).name()) == 0) {
// Further check whether the additional input is in initializers
fail_shape_inference("Cannot find missing input: ", g_->input(i).name(), "in initializers. ");
}
}
}
}
for (int i = 0, end = num_inputs; i < end; ++i) {
const TypeProto* inferred_input = input_types[i];
if (!inferred_input)
continue;
TypeProto* graph_input = g_->mutable_input(i)->mutable_type();
// Even if graphInput doesn't have defined type, it will assign inferredType to it
mergeShapesAndTypes(*inferred_input, graph_input);
if (symbol_table) {
MaterializeSymbolicShape(graph_input, *symbol_table);
}
}
// future: pass inputData into InferShapes either directly, or indirectly by
// updating initializers that match subgraph inputs.
(void)input_data;
InferShapesImpl(
g_,
*context_->outer_scope_value_types_by_name, // never null
context_->opset_imports,
options_,
symbol_table,
context_->model_local_functions,
context_->schema_registry,
context_->generated_shape_data_by_name);
std::vector<const TypeProto*> graph_output_types;
graph_output_types.reserve(g_->output().size());
for (const ValueInfoProto& output : g_->output()) {
graph_output_types.push_back(&output.type());
}
return graph_output_types;
}
std::string GetErrorWithNodeInfo(const NodeProto& n, const std::runtime_error& err) {
std::string op_name = n.has_name() ? (", node name: " + n.name()) : "";
return "(op_type:" + n.op_type() + op_name + "): " + err.what();
}
void TraverseGraphsToAddExistingSymbols(const GraphProto& g, SymbolTable& symbol_table) {
symbol_table.addFromGraph(g);
for (const auto& n : g.node()) {
for (auto& attr : n.attribute()) {
if (attr.has_g()) {
TraverseGraphsToAddExistingSymbols(attr.g(), symbol_table);
}
}
}
}
} // namespace shape_inference
} // namespace ONNX_NAMESPACE
|