Spaces:
Sleeping
Sleeping
from sympy.core import Lambda, Symbol, symbols | |
from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s, R2_origin | |
from sympy.diffgeom import (Manifold, Patch, CoordSystem, Commutator, Differential, TensorProduct, | |
WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative, | |
covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st, | |
metric_to_Christoffel_2nd, metric_to_Riemann_components, | |
metric_to_Ricci_components, intcurve_diffequ, intcurve_series) | |
from sympy.simplify import trigsimp, simplify | |
from sympy.functions import sqrt, atan2, sin | |
from sympy.matrices import Matrix | |
from sympy.testing.pytest import raises, nocache_fail | |
from sympy.testing.pytest import warns_deprecated_sympy | |
TP = TensorProduct | |
def test_coordsys_transform(): | |
# test inverse transforms | |
p, q, r, s = symbols('p q r s') | |
rel = {('first', 'second'): [(p, q), (q, -p)]} | |
R2_pq = CoordSystem('first', R2_origin, [p, q], rel) | |
R2_rs = CoordSystem('second', R2_origin, [r, s], rel) | |
r, s = R2_rs.symbols | |
assert R2_rs.transform(R2_pq) == Matrix([[-s], [r]]) | |
# inverse transform impossible case | |
a, b = symbols('a b', positive=True) | |
rel = {('first', 'second'): [(a,), (-a,)]} | |
R2_a = CoordSystem('first', R2_origin, [a], rel) | |
R2_b = CoordSystem('second', R2_origin, [b], rel) | |
# This transformation is uninvertible because there is no positive a, b satisfying a = -b | |
with raises(NotImplementedError): | |
R2_b.transform(R2_a) | |
# inverse transform ambiguous case | |
c, d = symbols('c d') | |
rel = {('first', 'second'): [(c,), (c**2,)]} | |
R2_c = CoordSystem('first', R2_origin, [c], rel) | |
R2_d = CoordSystem('second', R2_origin, [d], rel) | |
# The transform method should throw if it finds multiple inverses for a coordinate transformation. | |
with raises(ValueError): | |
R2_d.transform(R2_c) | |
# test indirect transformation | |
a, b, c, d, e, f = symbols('a, b, c, d, e, f') | |
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b)], | |
('C2', 'C3'): [(c, d), (3*c, 2*d)]} | |
C1 = CoordSystem('C1', R2_origin, (a, b), rel) | |
C2 = CoordSystem('C2', R2_origin, (c, d), rel) | |
C3 = CoordSystem('C3', R2_origin, (e, f), rel) | |
a, b = C1.symbols | |
c, d = C2.symbols | |
e, f = C3.symbols | |
assert C2.transform(C1) == Matrix([c/2, d/3]) | |
assert C1.transform(C3) == Matrix([6*a, 6*b]) | |
assert C3.transform(C1) == Matrix([e/6, f/6]) | |
assert C3.transform(C2) == Matrix([e/3, f/2]) | |
a, b, c, d, e, f = symbols('a, b, c, d, e, f') | |
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b + 1)], | |
('C3', 'C2'): [(e, f), (-e - 2, 2*f)]} | |
C1 = CoordSystem('C1', R2_origin, (a, b), rel) | |
C2 = CoordSystem('C2', R2_origin, (c, d), rel) | |
C3 = CoordSystem('C3', R2_origin, (e, f), rel) | |
a, b = C1.symbols | |
c, d = C2.symbols | |
e, f = C3.symbols | |
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) | |
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) | |
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) | |
assert C3.transform(C2) == Matrix([-e - 2, 2*f]) | |
# old signature uses Lambda | |
a, b, c, d, e, f = symbols('a, b, c, d, e, f') | |
rel = {('C1', 'C2'): Lambda((a, b), (2*a, 3*b + 1)), | |
('C3', 'C2'): Lambda((e, f), (-e - 2, 2*f))} | |
C1 = CoordSystem('C1', R2_origin, (a, b), rel) | |
C2 = CoordSystem('C2', R2_origin, (c, d), rel) | |
C3 = CoordSystem('C3', R2_origin, (e, f), rel) | |
a, b = C1.symbols | |
c, d = C2.symbols | |
e, f = C3.symbols | |
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) | |
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) | |
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) | |
assert C3.transform(C2) == Matrix([-e - 2, 2*f]) | |
def test_R2(): | |
x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) | |
point_r = R2_r.point([x0, y0]) | |
point_p = R2_p.point([r0, theta0]) | |
# r**2 = x**2 + y**2 | |
assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0 | |
assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0 | |
assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0 | |
# polar->rect->polar == Id | |
a, b = symbols('a b', positive=True) | |
m = Matrix([[a], [b]]) | |
#TODO assert m == R2_r.transform(R2_p, R2_p.transform(R2_r, [a, b])).applyfunc(simplify) | |
assert m == R2_p.transform(R2_r, R2_r.transform(R2_p, m)).applyfunc(simplify) | |
# deprecated method | |
with warns_deprecated_sympy(): | |
assert m == R2_p.coord_tuple_transform_to( | |
R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify) | |
def test_R3(): | |
a, b, c = symbols('a b c', positive=True) | |
m = Matrix([[a], [b], [c]]) | |
assert m == R3_c.transform(R3_r, R3_r.transform(R3_c, m)).applyfunc(simplify) | |
#TODO assert m == R3_r.transform(R3_c, R3_c.transform(R3_r, m)).applyfunc(simplify) | |
assert m == R3_s.transform( | |
R3_r, R3_r.transform(R3_s, m)).applyfunc(simplify) | |
#TODO assert m == R3_r.transform(R3_s, R3_s.transform(R3_r, m)).applyfunc(simplify) | |
assert m == R3_s.transform( | |
R3_c, R3_c.transform(R3_s, m)).applyfunc(simplify) | |
#TODO assert m == R3_c.transform(R3_s, R3_s.transform(R3_c, m)).applyfunc(simplify) | |
with warns_deprecated_sympy(): | |
assert m == R3_c.coord_tuple_transform_to( | |
R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) | |
#TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) | |
assert m == R3_s.coord_tuple_transform_to( | |
R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) | |
#TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) | |
assert m == R3_s.coord_tuple_transform_to( | |
R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) | |
#TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) | |
def test_CoordinateSymbol(): | |
x, y = R2_r.symbols | |
r, theta = R2_p.symbols | |
assert y.rewrite(R2_p) == r*sin(theta) | |
def test_point(): | |
x, y = symbols('x, y') | |
p = R2_r.point([x, y]) | |
assert p.free_symbols == {x, y} | |
assert p.coords(R2_r) == p.coords() == Matrix([x, y]) | |
assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)]) | |
def test_commutator(): | |
assert Commutator(R2.e_x, R2.e_y) == 0 | |
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0 | |
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y | |
c = Commutator(R2.e_x, R2.e_r) | |
assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta) | |
def test_differential(): | |
xdy = R2.x*R2.dy | |
dxdy = Differential(xdy) | |
assert xdy.rcall(None) == xdy | |
assert dxdy(R2.e_x, R2.e_y) == 1 | |
assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x | |
assert Differential(dxdy) == 0 | |
def test_products(): | |
assert TensorProduct( | |
R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1 | |
assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx | |
assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy | |
assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy | |
assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx | |
assert TensorProduct( | |
R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1 | |
assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x | |
assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y | |
assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y | |
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x | |
assert TensorProduct( | |
R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1 | |
assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx | |
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y | |
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y | |
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x | |
assert TensorProduct( | |
R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1 | |
assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x | |
assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy | |
assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy | |
assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y | |
assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1 | |
assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1 | |
def test_lie_derivative(): | |
assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 | |
assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 | |
assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 | |
assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) | |
assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 | |
assert LieDerivative( | |
R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0 | |
def test_covar_deriv(): | |
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
cvd = BaseCovarDerivativeOp(R2_r, 0, ch) | |
assert cvd(R2.x) == 1 | |
# This line fails if the cache is disabled: | |
assert cvd(R2.x*R2.e_x) == R2.e_x | |
cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) | |
assert cvd(R2.x) == R2.x | |
assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x | |
def test_intcurve_diffequ(): | |
t = symbols('t') | |
start_point = R2_r.point([1, 0]) | |
vector_field = -R2.y*R2.e_x + R2.x*R2.e_y | |
equations, init_cond = intcurve_diffequ(vector_field, t, start_point) | |
assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]' | |
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' | |
equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) | |
assert str( | |
equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]' | |
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' | |
def test_helpers_and_coordinate_dependent(): | |
one_form = R2.dr + R2.dx | |
two_form = Differential(R2.x*R2.dr + R2.r*R2.dx) | |
three_form = Differential( | |
R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr)) | |
metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy) | |
metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr) | |
misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr | |
misform_b = R2.dr**4 | |
misform_c = R2.dx*R2.dy | |
twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy) | |
twoform_not_TP = WedgeProduct(R2.dx, R2.dy) | |
one_vector = R2.e_x + R2.e_y | |
two_vector = TensorProduct(R2.e_x, R2.e_y) | |
three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x) | |
two_wp = WedgeProduct(R2.e_x,R2.e_y) | |
assert covariant_order(one_form) == 1 | |
assert covariant_order(two_form) == 2 | |
assert covariant_order(three_form) == 3 | |
assert covariant_order(two_form + metric) == 2 | |
assert covariant_order(two_form + metric_ambig) == 2 | |
assert covariant_order(two_form + twoform_not_sym) == 2 | |
assert covariant_order(two_form + twoform_not_TP) == 2 | |
assert contravariant_order(one_vector) == 1 | |
assert contravariant_order(two_vector) == 2 | |
assert contravariant_order(three_vector) == 3 | |
assert contravariant_order(two_vector + two_wp) == 2 | |
raises(ValueError, lambda: covariant_order(misform_a)) | |
raises(ValueError, lambda: covariant_order(misform_b)) | |
raises(ValueError, lambda: covariant_order(misform_c)) | |
assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]]) | |
assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]]) | |
assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]]) | |
raises(ValueError, lambda: twoform_to_matrix(one_form)) | |
raises(ValueError, lambda: twoform_to_matrix(three_form)) | |
raises(ValueError, lambda: twoform_to_matrix(metric_ambig)) | |
raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym)) | |
raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym)) | |
raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym)) | |
raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym)) | |
def test_correct_arguments(): | |
raises(ValueError, lambda: R2.e_x(R2.e_x)) | |
raises(ValueError, lambda: R2.e_x(R2.dx)) | |
raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) | |
raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) | |
raises(ValueError, lambda: Differential(Differential(R2.e_x))) | |
raises(ValueError, lambda: R2.dx(R2.x)) | |
raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) | |
raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) | |
raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) | |
raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) | |
a = Symbol('a') | |
raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) | |
raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) | |
raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) | |
raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) | |
raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) | |
raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) | |
raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y)) | |
raises(ValueError, lambda: covariant_order(R2.dx*R2.dy)) | |
def test_simplify(): | |
x, y = R2_r.coord_functions() | |
dx, dy = R2_r.base_oneforms() | |
ex, ey = R2_r.base_vectors() | |
assert simplify(x) == x | |
assert simplify(x*y) == x*y | |
assert simplify(dx*dy) == dx*dy | |
assert simplify(ex*ey) == ex*ey | |
assert ((1-x)*dx)/(1-x)**2 == dx/(1-x) | |
def test_issue_17917(): | |
X = R2.x*R2.e_x - R2.y*R2.e_y | |
Y = (R2.x**2 + R2.y**2)*R2.e_x - R2.x*R2.y*R2.e_y | |
assert LieDerivative(X, Y).expand() == ( | |
R2.x**2*R2.e_x - 3*R2.y**2*R2.e_x - R2.x*R2.y*R2.e_y) | |
def test_deprecations(): | |
m = Manifold('M', 2) | |
p = Patch('P', m) | |
with warns_deprecated_sympy(): | |
CoordSystem('Car2d', p, names=['x', 'y']) | |
with warns_deprecated_sympy(): | |
c = CoordSystem('Car2d', p, ['x', 'y']) | |
with warns_deprecated_sympy(): | |
list(m.patches) | |
with warns_deprecated_sympy(): | |
list(c.transforms) | |