Spaces:
Sleeping
Sleeping
from sympy.core import S, sympify, cacheit | |
from sympy.core.add import Add | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.core.logic import fuzzy_or, fuzzy_and, fuzzy_not, FuzzyBool | |
from sympy.core.numbers import I, pi, Rational | |
from sympy.core.symbol import Dummy | |
from sympy.functions.combinatorial.factorials import (binomial, factorial, | |
RisingFactorial) | |
from sympy.functions.combinatorial.numbers import bernoulli, euler, nC | |
from sympy.functions.elementary.complexes import Abs, im, re | |
from sympy.functions.elementary.exponential import exp, log, match_real_imag | |
from sympy.functions.elementary.integers import floor | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import ( | |
acos, acot, asin, atan, cos, cot, csc, sec, sin, tan, | |
_imaginary_unit_as_coefficient) | |
from sympy.polys.specialpolys import symmetric_poly | |
def _rewrite_hyperbolics_as_exp(expr): | |
return expr.xreplace({h: h.rewrite(exp) | |
for h in expr.atoms(HyperbolicFunction)}) | |
def _acosh_table(): | |
return { | |
I: log(I*(1 + sqrt(2))), | |
-I: log(-I*(1 + sqrt(2))), | |
S.Half: pi/3, | |
Rational(-1, 2): pi*Rational(2, 3), | |
sqrt(2)/2: pi/4, | |
-sqrt(2)/2: pi*Rational(3, 4), | |
1/sqrt(2): pi/4, | |
-1/sqrt(2): pi*Rational(3, 4), | |
sqrt(3)/2: pi/6, | |
-sqrt(3)/2: pi*Rational(5, 6), | |
(sqrt(3) - 1)/sqrt(2**3): pi*Rational(5, 12), | |
-(sqrt(3) - 1)/sqrt(2**3): pi*Rational(7, 12), | |
sqrt(2 + sqrt(2))/2: pi/8, | |
-sqrt(2 + sqrt(2))/2: pi*Rational(7, 8), | |
sqrt(2 - sqrt(2))/2: pi*Rational(3, 8), | |
-sqrt(2 - sqrt(2))/2: pi*Rational(5, 8), | |
(1 + sqrt(3))/(2*sqrt(2)): pi/12, | |
-(1 + sqrt(3))/(2*sqrt(2)): pi*Rational(11, 12), | |
(sqrt(5) + 1)/4: pi/5, | |
-(sqrt(5) + 1)/4: pi*Rational(4, 5) | |
} | |
def _acsch_table(): | |
return { | |
I: -pi / 2, | |
I*(sqrt(2) + sqrt(6)): -pi / 12, | |
I*(1 + sqrt(5)): -pi / 10, | |
I*2 / sqrt(2 - sqrt(2)): -pi / 8, | |
I*2: -pi / 6, | |
I*sqrt(2 + 2/sqrt(5)): -pi / 5, | |
I*sqrt(2): -pi / 4, | |
I*(sqrt(5)-1): -3*pi / 10, | |
I*2 / sqrt(3): -pi / 3, | |
I*2 / sqrt(2 + sqrt(2)): -3*pi / 8, | |
I*sqrt(2 - 2/sqrt(5)): -2*pi / 5, | |
I*(sqrt(6) - sqrt(2)): -5*pi / 12, | |
S(2): -I*log((1+sqrt(5))/2), | |
} | |
def _asech_table(): | |
return { | |
I: - (pi*I / 2) + log(1 + sqrt(2)), | |
-I: (pi*I / 2) + log(1 + sqrt(2)), | |
(sqrt(6) - sqrt(2)): pi / 12, | |
(sqrt(2) - sqrt(6)): 11*pi / 12, | |
sqrt(2 - 2/sqrt(5)): pi / 10, | |
-sqrt(2 - 2/sqrt(5)): 9*pi / 10, | |
2 / sqrt(2 + sqrt(2)): pi / 8, | |
-2 / sqrt(2 + sqrt(2)): 7*pi / 8, | |
2 / sqrt(3): pi / 6, | |
-2 / sqrt(3): 5*pi / 6, | |
(sqrt(5) - 1): pi / 5, | |
(1 - sqrt(5)): 4*pi / 5, | |
sqrt(2): pi / 4, | |
-sqrt(2): 3*pi / 4, | |
sqrt(2 + 2/sqrt(5)): 3*pi / 10, | |
-sqrt(2 + 2/sqrt(5)): 7*pi / 10, | |
S(2): pi / 3, | |
-S(2): 2*pi / 3, | |
sqrt(2*(2 + sqrt(2))): 3*pi / 8, | |
-sqrt(2*(2 + sqrt(2))): 5*pi / 8, | |
(1 + sqrt(5)): 2*pi / 5, | |
(-1 - sqrt(5)): 3*pi / 5, | |
(sqrt(6) + sqrt(2)): 5*pi / 12, | |
(-sqrt(6) - sqrt(2)): 7*pi / 12, | |
I*S.Infinity: -pi*I / 2, | |
I*S.NegativeInfinity: pi*I / 2, | |
} | |
############################################################################### | |
########################### HYPERBOLIC FUNCTIONS ############################## | |
############################################################################### | |
class HyperbolicFunction(Function): | |
""" | |
Base class for hyperbolic functions. | |
See Also | |
======== | |
sinh, cosh, tanh, coth | |
""" | |
unbranched = True | |
def _peeloff_ipi(arg): | |
r""" | |
Split ARG into two parts, a "rest" and a multiple of $I\pi$. | |
This assumes ARG to be an ``Add``. | |
The multiple of $I\pi$ returned in the second position is always a ``Rational``. | |
Examples | |
======== | |
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel | |
>>> from sympy import pi, I | |
>>> from sympy.abc import x, y | |
>>> peel(x + I*pi/2) | |
(x, 1/2) | |
>>> peel(x + I*2*pi/3 + I*pi*y) | |
(x + I*pi*y + I*pi/6, 1/2) | |
""" | |
ipi = pi*I | |
for a in Add.make_args(arg): | |
if a == ipi: | |
K = S.One | |
break | |
elif a.is_Mul: | |
K, p = a.as_two_terms() | |
if p == ipi and K.is_Rational: | |
break | |
else: | |
return arg, S.Zero | |
m1 = (K % S.Half) | |
m2 = K - m1 | |
return arg - m2*ipi, m2 | |
class sinh(HyperbolicFunction): | |
r""" | |
``sinh(x)`` is the hyperbolic sine of ``x``. | |
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$. | |
Examples | |
======== | |
>>> from sympy import sinh | |
>>> from sympy.abc import x | |
>>> sinh(x) | |
sinh(x) | |
See Also | |
======== | |
cosh, tanh, asinh | |
""" | |
def fdiff(self, argindex=1): | |
""" | |
Returns the first derivative of this function. | |
""" | |
if argindex == 1: | |
return cosh(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return asinh | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Infinity | |
elif arg is S.NegativeInfinity: | |
return S.NegativeInfinity | |
elif arg.is_zero: | |
return S.Zero | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return I * sin(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_Add: | |
x, m = _peeloff_ipi(arg) | |
if m: | |
m = m*pi*I | |
return sinh(m)*cosh(x) + cosh(m)*sinh(x) | |
if arg.is_zero: | |
return S.Zero | |
if arg.func == asinh: | |
return arg.args[0] | |
if arg.func == acosh: | |
x = arg.args[0] | |
return sqrt(x - 1) * sqrt(x + 1) | |
if arg.func == atanh: | |
x = arg.args[0] | |
return x/sqrt(1 - x**2) | |
if arg.func == acoth: | |
x = arg.args[0] | |
return 1/(sqrt(x - 1) * sqrt(x + 1)) | |
def taylor_term(n, x, *previous_terms): | |
""" | |
Returns the next term in the Taylor series expansion. | |
""" | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2: | |
p = previous_terms[-2] | |
return p * x**2 / (n*(n - 1)) | |
else: | |
return x**(n) / factorial(n) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
""" | |
Returns this function as a complex coordinate. | |
""" | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.expand(deep, **hints), S.Zero) | |
else: | |
return (self, S.Zero) | |
if deep: | |
re, im = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
re, im = self.args[0].as_real_imag() | |
return (sinh(re)*cos(im), cosh(re)*sin(im)) | |
def _eval_expand_complex(self, deep=True, **hints): | |
re_part, im_part = self.as_real_imag(deep=deep, **hints) | |
return re_part + im_part*I | |
def _eval_expand_trig(self, deep=True, **hints): | |
if deep: | |
arg = self.args[0].expand(deep, **hints) | |
else: | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: # TODO, implement more if deep stuff here | |
x, y = arg.as_two_terms() | |
else: | |
coeff, terms = arg.as_coeff_Mul(rational=True) | |
if coeff is not S.One and coeff.is_Integer and terms is not S.One: | |
x = terms | |
y = (coeff - 1)*x | |
if x is not None: | |
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True) | |
return sinh(arg) | |
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): | |
return (exp(arg) - exp(-arg)) / 2 | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
return (exp(arg) - exp(-arg)) / 2 | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return -I * sin(I * arg) | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
return -I / csc(I * arg) | |
def _eval_rewrite_as_cosh(self, arg, **kwargs): | |
return -I*cosh(arg + pi*I/2) | |
def _eval_rewrite_as_tanh(self, arg, **kwargs): | |
tanh_half = tanh(S.Half*arg) | |
return 2*tanh_half/(1 - tanh_half**2) | |
def _eval_rewrite_as_coth(self, arg, **kwargs): | |
coth_half = coth(S.Half*arg) | |
return 2*coth_half/(coth_half**2 - 1) | |
def _eval_rewrite_as_csch(self, arg, **kwargs): | |
return 1 / csch(arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+') | |
if arg0.is_zero: | |
return arg | |
elif arg0.is_finite: | |
return self.func(arg0) | |
else: | |
return self | |
def _eval_is_real(self): | |
arg = self.args[0] | |
if arg.is_real: | |
return True | |
# if `im` is of the form n*pi | |
# else, check if it is a number | |
re, im = arg.as_real_imag() | |
return (im%pi).is_zero | |
def _eval_is_extended_real(self): | |
if self.args[0].is_extended_real: | |
return True | |
def _eval_is_positive(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_positive | |
def _eval_is_negative(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_negative | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
return arg.is_finite | |
def _eval_is_zero(self): | |
rest, ipi_mult = _peeloff_ipi(self.args[0]) | |
if rest.is_zero: | |
return ipi_mult.is_integer | |
class cosh(HyperbolicFunction): | |
r""" | |
``cosh(x)`` is the hyperbolic cosine of ``x``. | |
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$. | |
Examples | |
======== | |
>>> from sympy import cosh | |
>>> from sympy.abc import x | |
>>> cosh(x) | |
cosh(x) | |
See Also | |
======== | |
sinh, tanh, acosh | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return sinh(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
from sympy.functions.elementary.trigonometric import cos | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Infinity | |
elif arg is S.NegativeInfinity: | |
return S.Infinity | |
elif arg.is_zero: | |
return S.One | |
elif arg.is_negative: | |
return cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return cos(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return cls(-arg) | |
if arg.is_Add: | |
x, m = _peeloff_ipi(arg) | |
if m: | |
m = m*pi*I | |
return cosh(m)*cosh(x) + sinh(m)*sinh(x) | |
if arg.is_zero: | |
return S.One | |
if arg.func == asinh: | |
return sqrt(1 + arg.args[0]**2) | |
if arg.func == acosh: | |
return arg.args[0] | |
if arg.func == atanh: | |
return 1/sqrt(1 - arg.args[0]**2) | |
if arg.func == acoth: | |
x = arg.args[0] | |
return x/(sqrt(x - 1) * sqrt(x + 1)) | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2: | |
p = previous_terms[-2] | |
return p * x**2 / (n*(n - 1)) | |
else: | |
return x**(n)/factorial(n) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.expand(deep, **hints), S.Zero) | |
else: | |
return (self, S.Zero) | |
if deep: | |
re, im = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
re, im = self.args[0].as_real_imag() | |
return (cosh(re)*cos(im), sinh(re)*sin(im)) | |
def _eval_expand_complex(self, deep=True, **hints): | |
re_part, im_part = self.as_real_imag(deep=deep, **hints) | |
return re_part + im_part*I | |
def _eval_expand_trig(self, deep=True, **hints): | |
if deep: | |
arg = self.args[0].expand(deep, **hints) | |
else: | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: # TODO, implement more if deep stuff here | |
x, y = arg.as_two_terms() | |
else: | |
coeff, terms = arg.as_coeff_Mul(rational=True) | |
if coeff is not S.One and coeff.is_Integer and terms is not S.One: | |
x = terms | |
y = (coeff - 1)*x | |
if x is not None: | |
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True) | |
return cosh(arg) | |
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): | |
return (exp(arg) + exp(-arg)) / 2 | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
return (exp(arg) + exp(-arg)) / 2 | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return cos(I * arg, evaluate=False) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
return 1 / sec(I * arg, evaluate=False) | |
def _eval_rewrite_as_sinh(self, arg, **kwargs): | |
return -I*sinh(arg + pi*I/2, evaluate=False) | |
def _eval_rewrite_as_tanh(self, arg, **kwargs): | |
tanh_half = tanh(S.Half*arg)**2 | |
return (1 + tanh_half)/(1 - tanh_half) | |
def _eval_rewrite_as_coth(self, arg, **kwargs): | |
coth_half = coth(S.Half*arg)**2 | |
return (coth_half + 1)/(coth_half - 1) | |
def _eval_rewrite_as_sech(self, arg, **kwargs): | |
return 1 / sech(arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+') | |
if arg0.is_zero: | |
return S.One | |
elif arg0.is_finite: | |
return self.func(arg0) | |
else: | |
return self | |
def _eval_is_real(self): | |
arg = self.args[0] | |
# `cosh(x)` is real for real OR purely imaginary `x` | |
if arg.is_real or arg.is_imaginary: | |
return True | |
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a) | |
# the imaginary part can be an expression like n*pi | |
# if not, check if the imaginary part is a number | |
re, im = arg.as_real_imag() | |
return (im%pi).is_zero | |
def _eval_is_positive(self): | |
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x) | |
# cosh(z) is positive iff it is real and the real part is positive. | |
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi | |
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even | |
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive | |
z = self.args[0] | |
x, y = z.as_real_imag() | |
ymod = y % (2*pi) | |
yzero = ymod.is_zero | |
# shortcut if ymod is zero | |
if yzero: | |
return True | |
xzero = x.is_zero | |
# shortcut x is not zero | |
if xzero is False: | |
return yzero | |
return fuzzy_or([ | |
# Case 1: | |
yzero, | |
# Case 2: | |
fuzzy_and([ | |
xzero, | |
fuzzy_or([ymod < pi/2, ymod > 3*pi/2]) | |
]) | |
]) | |
def _eval_is_nonnegative(self): | |
z = self.args[0] | |
x, y = z.as_real_imag() | |
ymod = y % (2*pi) | |
yzero = ymod.is_zero | |
# shortcut if ymod is zero | |
if yzero: | |
return True | |
xzero = x.is_zero | |
# shortcut x is not zero | |
if xzero is False: | |
return yzero | |
return fuzzy_or([ | |
# Case 1: | |
yzero, | |
# Case 2: | |
fuzzy_and([ | |
xzero, | |
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2]) | |
]) | |
]) | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
return arg.is_finite | |
def _eval_is_zero(self): | |
rest, ipi_mult = _peeloff_ipi(self.args[0]) | |
if ipi_mult and rest.is_zero: | |
return (ipi_mult - S.Half).is_integer | |
class tanh(HyperbolicFunction): | |
r""" | |
``tanh(x)`` is the hyperbolic tangent of ``x``. | |
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$. | |
Examples | |
======== | |
>>> from sympy import tanh | |
>>> from sympy.abc import x | |
>>> tanh(x) | |
tanh(x) | |
See Also | |
======== | |
sinh, cosh, atanh | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return S.One - tanh(self.args[0])**2 | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return atanh | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.One | |
elif arg is S.NegativeInfinity: | |
return S.NegativeOne | |
elif arg.is_zero: | |
return S.Zero | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
if i_coeff.could_extract_minus_sign(): | |
return -I * tan(-i_coeff) | |
return I * tan(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_Add: | |
x, m = _peeloff_ipi(arg) | |
if m: | |
tanhm = tanh(m*pi*I) | |
if tanhm is S.ComplexInfinity: | |
return coth(x) | |
else: # tanhm == 0 | |
return tanh(x) | |
if arg.is_zero: | |
return S.Zero | |
if arg.func == asinh: | |
x = arg.args[0] | |
return x/sqrt(1 + x**2) | |
if arg.func == acosh: | |
x = arg.args[0] | |
return sqrt(x - 1) * sqrt(x + 1) / x | |
if arg.func == atanh: | |
return arg.args[0] | |
if arg.func == acoth: | |
return 1/arg.args[0] | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
a = 2**(n + 1) | |
B = bernoulli(n + 1) | |
F = factorial(n + 1) | |
return a*(a - 1) * B/F * x**n | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.expand(deep, **hints), S.Zero) | |
else: | |
return (self, S.Zero) | |
if deep: | |
re, im = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
re, im = self.args[0].as_real_imag() | |
denom = sinh(re)**2 + cos(im)**2 | |
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom) | |
def _eval_expand_trig(self, **hints): | |
arg = self.args[0] | |
if arg.is_Add: | |
n = len(arg.args) | |
TX = [tanh(x, evaluate=False)._eval_expand_trig() | |
for x in arg.args] | |
p = [0, 0] # [den, num] | |
for i in range(n + 1): | |
p[i % 2] += symmetric_poly(i, TX) | |
return p[1]/p[0] | |
elif arg.is_Mul: | |
coeff, terms = arg.as_coeff_Mul() | |
if coeff.is_Integer and coeff > 1: | |
T = tanh(terms) | |
n = [nC(range(coeff), k)*T**k for k in range(1, coeff + 1, 2)] | |
d = [nC(range(coeff), k)*T**k for k in range(0, coeff + 1, 2)] | |
return Add(*n)/Add(*d) | |
return tanh(arg) | |
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): | |
neg_exp, pos_exp = exp(-arg), exp(arg) | |
return (pos_exp - neg_exp)/(pos_exp + neg_exp) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
neg_exp, pos_exp = exp(-arg), exp(arg) | |
return (pos_exp - neg_exp)/(pos_exp + neg_exp) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
return -I * tan(I * arg, evaluate=False) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
return -I / cot(I * arg, evaluate=False) | |
def _eval_rewrite_as_sinh(self, arg, **kwargs): | |
return I*sinh(arg)/sinh(pi*I/2 - arg, evaluate=False) | |
def _eval_rewrite_as_cosh(self, arg, **kwargs): | |
return I*cosh(pi*I/2 - arg, evaluate=False)/cosh(arg) | |
def _eval_rewrite_as_coth(self, arg, **kwargs): | |
return 1/coth(arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.series.order import Order | |
arg = self.args[0].as_leading_term(x) | |
if x in arg.free_symbols and Order(1, x).contains(arg): | |
return arg | |
else: | |
return self.func(arg) | |
def _eval_is_real(self): | |
arg = self.args[0] | |
if arg.is_real: | |
return True | |
re, im = arg.as_real_imag() | |
# if denom = 0, tanh(arg) = zoo | |
if re == 0 and im % pi == pi/2: | |
return None | |
# check if im is of the form n*pi/2 to make sin(2*im) = 0 | |
# if not, im could be a number, return False in that case | |
return (im % (pi/2)).is_zero | |
def _eval_is_extended_real(self): | |
if self.args[0].is_extended_real: | |
return True | |
def _eval_is_positive(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_positive | |
def _eval_is_negative(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_negative | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
re, im = arg.as_real_imag() | |
denom = cos(im)**2 + sinh(re)**2 | |
if denom == 0: | |
return False | |
elif denom.is_number: | |
return True | |
if arg.is_extended_real: | |
return True | |
def _eval_is_zero(self): | |
arg = self.args[0] | |
if arg.is_zero: | |
return True | |
class coth(HyperbolicFunction): | |
r""" | |
``coth(x)`` is the hyperbolic cotangent of ``x``. | |
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$. | |
Examples | |
======== | |
>>> from sympy import coth | |
>>> from sympy.abc import x | |
>>> coth(x) | |
coth(x) | |
See Also | |
======== | |
sinh, cosh, acoth | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -1/sinh(self.args[0])**2 | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return acoth | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.One | |
elif arg is S.NegativeInfinity: | |
return S.NegativeOne | |
elif arg.is_zero: | |
return S.ComplexInfinity | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
if i_coeff.could_extract_minus_sign(): | |
return I * cot(-i_coeff) | |
return -I * cot(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_Add: | |
x, m = _peeloff_ipi(arg) | |
if m: | |
cothm = coth(m*pi*I) | |
if cothm is S.ComplexInfinity: | |
return coth(x) | |
else: # cothm == 0 | |
return tanh(x) | |
if arg.is_zero: | |
return S.ComplexInfinity | |
if arg.func == asinh: | |
x = arg.args[0] | |
return sqrt(1 + x**2)/x | |
if arg.func == acosh: | |
x = arg.args[0] | |
return x/(sqrt(x - 1) * sqrt(x + 1)) | |
if arg.func == atanh: | |
return 1/arg.args[0] | |
if arg.func == acoth: | |
return arg.args[0] | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return 1 / sympify(x) | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
B = bernoulli(n + 1) | |
F = factorial(n + 1) | |
return 2**(n + 1) * B/F * x**n | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.expand(deep, **hints), S.Zero) | |
else: | |
return (self, S.Zero) | |
if deep: | |
re, im = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
re, im = self.args[0].as_real_imag() | |
denom = sinh(re)**2 + sin(im)**2 | |
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom) | |
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): | |
neg_exp, pos_exp = exp(-arg), exp(arg) | |
return (pos_exp + neg_exp)/(pos_exp - neg_exp) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
neg_exp, pos_exp = exp(-arg), exp(arg) | |
return (pos_exp + neg_exp)/(pos_exp - neg_exp) | |
def _eval_rewrite_as_sinh(self, arg, **kwargs): | |
return -I*sinh(pi*I/2 - arg, evaluate=False)/sinh(arg) | |
def _eval_rewrite_as_cosh(self, arg, **kwargs): | |
return -I*cosh(arg)/cosh(pi*I/2 - arg, evaluate=False) | |
def _eval_rewrite_as_tanh(self, arg, **kwargs): | |
return 1/tanh(arg) | |
def _eval_is_positive(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_positive | |
def _eval_is_negative(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_negative | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.series.order import Order | |
arg = self.args[0].as_leading_term(x) | |
if x in arg.free_symbols and Order(1, x).contains(arg): | |
return 1/arg | |
else: | |
return self.func(arg) | |
def _eval_expand_trig(self, **hints): | |
arg = self.args[0] | |
if arg.is_Add: | |
CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args] | |
p = [[], []] | |
n = len(arg.args) | |
for i in range(n, -1, -1): | |
p[(n - i) % 2].append(symmetric_poly(i, CX)) | |
return Add(*p[0])/Add(*p[1]) | |
elif arg.is_Mul: | |
coeff, x = arg.as_coeff_Mul(rational=True) | |
if coeff.is_Integer and coeff > 1: | |
c = coth(x, evaluate=False) | |
p = [[], []] | |
for i in range(coeff, -1, -1): | |
p[(coeff - i) % 2].append(binomial(coeff, i)*c**i) | |
return Add(*p[0])/Add(*p[1]) | |
return coth(arg) | |
class ReciprocalHyperbolicFunction(HyperbolicFunction): | |
"""Base class for reciprocal functions of hyperbolic functions. """ | |
#To be defined in class | |
_reciprocal_of = None | |
_is_even: FuzzyBool = None | |
_is_odd: FuzzyBool = None | |
def eval(cls, arg): | |
if arg.could_extract_minus_sign(): | |
if cls._is_even: | |
return cls(-arg) | |
if cls._is_odd: | |
return -cls(-arg) | |
t = cls._reciprocal_of.eval(arg) | |
if hasattr(arg, 'inverse') and arg.inverse() == cls: | |
return arg.args[0] | |
return 1/t if t is not None else t | |
def _call_reciprocal(self, method_name, *args, **kwargs): | |
# Calls method_name on _reciprocal_of | |
o = self._reciprocal_of(self.args[0]) | |
return getattr(o, method_name)(*args, **kwargs) | |
def _calculate_reciprocal(self, method_name, *args, **kwargs): | |
# If calling method_name on _reciprocal_of returns a value != None | |
# then return the reciprocal of that value | |
t = self._call_reciprocal(method_name, *args, **kwargs) | |
return 1/t if t is not None else t | |
def _rewrite_reciprocal(self, method_name, arg): | |
# Special handling for rewrite functions. If reciprocal rewrite returns | |
# unmodified expression, then return None | |
t = self._call_reciprocal(method_name, arg) | |
if t is not None and t != self._reciprocal_of(arg): | |
return 1/t | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) | |
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg) | |
def _eval_rewrite_as_tanh(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg) | |
def _eval_rewrite_as_coth(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg) | |
def as_real_imag(self, deep = True, **hints): | |
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def _eval_expand_complex(self, deep=True, **hints): | |
re_part, im_part = self.as_real_imag(deep=True, **hints) | |
return re_part + I*im_part | |
def _eval_expand_trig(self, **hints): | |
return self._calculate_reciprocal("_eval_expand_trig", **hints) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) | |
def _eval_is_extended_real(self): | |
return self._reciprocal_of(self.args[0]).is_extended_real | |
def _eval_is_finite(self): | |
return (1/self._reciprocal_of(self.args[0])).is_finite | |
class csch(ReciprocalHyperbolicFunction): | |
r""" | |
``csch(x)`` is the hyperbolic cosecant of ``x``. | |
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$ | |
Examples | |
======== | |
>>> from sympy import csch | |
>>> from sympy.abc import x | |
>>> csch(x) | |
csch(x) | |
See Also | |
======== | |
sinh, cosh, tanh, sech, asinh, acosh | |
""" | |
_reciprocal_of = sinh | |
_is_odd = True | |
def fdiff(self, argindex=1): | |
""" | |
Returns the first derivative of this function | |
""" | |
if argindex == 1: | |
return -coth(self.args[0]) * csch(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def taylor_term(n, x, *previous_terms): | |
""" | |
Returns the next term in the Taylor series expansion | |
""" | |
if n == 0: | |
return 1/sympify(x) | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
B = bernoulli(n + 1) | |
F = factorial(n + 1) | |
return 2 * (1 - 2**n) * B/F * x**n | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return I / sin(I * arg, evaluate=False) | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
return I * csc(I * arg, evaluate=False) | |
def _eval_rewrite_as_cosh(self, arg, **kwargs): | |
return I / cosh(arg + I * pi / 2, evaluate=False) | |
def _eval_rewrite_as_sinh(self, arg, **kwargs): | |
return 1 / sinh(arg) | |
def _eval_is_positive(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_positive | |
def _eval_is_negative(self): | |
if self.args[0].is_extended_real: | |
return self.args[0].is_negative | |
class sech(ReciprocalHyperbolicFunction): | |
r""" | |
``sech(x)`` is the hyperbolic secant of ``x``. | |
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$ | |
Examples | |
======== | |
>>> from sympy import sech | |
>>> from sympy.abc import x | |
>>> sech(x) | |
sech(x) | |
See Also | |
======== | |
sinh, cosh, tanh, coth, csch, asinh, acosh | |
""" | |
_reciprocal_of = cosh | |
_is_even = True | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return - tanh(self.args[0])*sech(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
return euler(n) / factorial(n) * x**(n) | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return 1 / cos(I * arg, evaluate=False) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
return sec(I * arg, evaluate=False) | |
def _eval_rewrite_as_sinh(self, arg, **kwargs): | |
return I / sinh(arg + I * pi /2, evaluate=False) | |
def _eval_rewrite_as_cosh(self, arg, **kwargs): | |
return 1 / cosh(arg) | |
def _eval_is_positive(self): | |
if self.args[0].is_extended_real: | |
return True | |
############################################################################### | |
############################# HYPERBOLIC INVERSES ############################# | |
############################################################################### | |
class InverseHyperbolicFunction(Function): | |
"""Base class for inverse hyperbolic functions.""" | |
pass | |
class asinh(InverseHyperbolicFunction): | |
""" | |
``asinh(x)`` is the inverse hyperbolic sine of ``x``. | |
The inverse hyperbolic sine function. | |
Examples | |
======== | |
>>> from sympy import asinh | |
>>> from sympy.abc import x | |
>>> asinh(x).diff(x) | |
1/sqrt(x**2 + 1) | |
>>> asinh(1) | |
log(1 + sqrt(2)) | |
See Also | |
======== | |
acosh, atanh, sinh | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/sqrt(self.args[0]**2 + 1) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Infinity | |
elif arg is S.NegativeInfinity: | |
return S.NegativeInfinity | |
elif arg.is_zero: | |
return S.Zero | |
elif arg is S.One: | |
return log(sqrt(2) + 1) | |
elif arg is S.NegativeOne: | |
return log(sqrt(2) - 1) | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.ComplexInfinity | |
if arg.is_zero: | |
return S.Zero | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return I * asin(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if isinstance(arg, sinh) and arg.args[0].is_number: | |
z = arg.args[0] | |
if z.is_real: | |
return z | |
r, i = match_real_imag(z) | |
if r is not None and i is not None: | |
f = floor((i + pi/2)/pi) | |
m = z - I*pi*f | |
even = f.is_even | |
if even is True: | |
return m | |
elif even is False: | |
return -m | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) >= 2 and n > 2: | |
p = previous_terms[-2] | |
return -p * (n - 2)**2/(n*(n - 1)) * x**2 | |
else: | |
k = (n - 1) // 2 | |
R = RisingFactorial(S.Half, k) | |
F = factorial(k) | |
return S.NegativeOne**k * R / F * x**n / n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asinh | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0.is_zero: | |
return arg.as_leading_term(x) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
# Handling branch points | |
if x0 in (-I, I, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) | |
if (1 + x0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if re(ndir).is_positive: | |
if im(x0).is_negative: | |
return -self.func(x0) - I*pi | |
elif re(ndir).is_negative: | |
if im(x0).is_positive: | |
return -self.func(x0) + I*pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # asinh | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 in (I, -I): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) | |
if (1 + arg0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if re(ndir).is_positive: | |
if im(arg0).is_negative: | |
return -res - I*pi | |
elif re(ndir).is_negative: | |
if im(arg0).is_positive: | |
return -res + I*pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return log(x + sqrt(x**2 + 1)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_atanh(self, x, **kwargs): | |
return atanh(x/sqrt(1 + x**2)) | |
def _eval_rewrite_as_acosh(self, x, **kwargs): | |
ix = I*x | |
return I*(sqrt(1 - ix)/sqrt(ix - 1) * acosh(ix) - pi/2) | |
def _eval_rewrite_as_asin(self, x, **kwargs): | |
return -I * asin(I * x, evaluate=False) | |
def _eval_rewrite_as_acos(self, x, **kwargs): | |
return I * acos(I * x, evaluate=False) - I*pi/2 | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return sinh | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
def _eval_is_finite(self): | |
return self.args[0].is_finite | |
class acosh(InverseHyperbolicFunction): | |
""" | |
``acosh(x)`` is the inverse hyperbolic cosine of ``x``. | |
The inverse hyperbolic cosine function. | |
Examples | |
======== | |
>>> from sympy import acosh | |
>>> from sympy.abc import x | |
>>> acosh(x).diff(x) | |
1/(sqrt(x - 1)*sqrt(x + 1)) | |
>>> acosh(1) | |
0 | |
See Also | |
======== | |
asinh, atanh, cosh | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
arg = self.args[0] | |
return 1/(sqrt(arg - 1)*sqrt(arg + 1)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Infinity | |
elif arg is S.NegativeInfinity: | |
return S.Infinity | |
elif arg.is_zero: | |
return pi*I / 2 | |
elif arg is S.One: | |
return S.Zero | |
elif arg is S.NegativeOne: | |
return pi*I | |
if arg.is_number: | |
cst_table = _acosh_table() | |
if arg in cst_table: | |
if arg.is_extended_real: | |
return cst_table[arg]*I | |
return cst_table[arg] | |
if arg is S.ComplexInfinity: | |
return S.ComplexInfinity | |
if arg == I*S.Infinity: | |
return S.Infinity + I*pi/2 | |
if arg == -I*S.Infinity: | |
return S.Infinity - I*pi/2 | |
if arg.is_zero: | |
return pi*I*S.Half | |
if isinstance(arg, cosh) and arg.args[0].is_number: | |
z = arg.args[0] | |
if z.is_real: | |
return Abs(z) | |
r, i = match_real_imag(z) | |
if r is not None and i is not None: | |
f = floor(i/pi) | |
m = z - I*pi*f | |
even = f.is_even | |
if even is True: | |
if r.is_nonnegative: | |
return m | |
elif r.is_negative: | |
return -m | |
elif even is False: | |
m -= I*pi | |
if r.is_nonpositive: | |
return -m | |
elif r.is_positive: | |
return m | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return I*pi/2 | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) >= 2 and n > 2: | |
p = previous_terms[-2] | |
return p * (n - 2)**2/(n*(n - 1)) * x**2 | |
else: | |
k = (n - 1) // 2 | |
R = RisingFactorial(S.Half, k) | |
F = factorial(k) | |
return -R / F * I * x**n / n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acosh | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
# Handling branch points | |
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
# Handling points lying on branch cuts (-oo, 1) | |
if (x0 - 1).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if (x0 + 1).is_negative: | |
return self.func(x0) - 2*I*pi | |
return -self.func(x0) | |
elif not im(ndir).is_positive: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # acosh | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 in (S.One, S.NegativeOne): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-oo, 1) | |
if (arg0 - 1).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if (arg0 + 1).is_negative: | |
return res - 2*I*pi | |
return -res | |
elif not im(ndir).is_positive: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return log(x + sqrt(x + 1) * sqrt(x - 1)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_acos(self, x, **kwargs): | |
return sqrt(x - 1)/sqrt(1 - x) * acos(x) | |
def _eval_rewrite_as_asin(self, x, **kwargs): | |
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 - asin(x)) | |
def _eval_rewrite_as_asinh(self, x, **kwargs): | |
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 + I*asinh(I*x, evaluate=False)) | |
def _eval_rewrite_as_atanh(self, x, **kwargs): | |
sxm1 = sqrt(x - 1) | |
s1mx = sqrt(1 - x) | |
sx2m1 = sqrt(x**2 - 1) | |
return (pi/2*sxm1/s1mx*(1 - x * sqrt(1/x**2)) + | |
sxm1*sqrt(x + 1)/sx2m1 * atanh(sx2m1/x)) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return cosh | |
def _eval_is_zero(self): | |
if (self.args[0] - 1).is_zero: | |
return True | |
def _eval_is_extended_real(self): | |
return fuzzy_and([self.args[0].is_extended_real, (self.args[0] - 1).is_extended_nonnegative]) | |
def _eval_is_finite(self): | |
return self.args[0].is_finite | |
class atanh(InverseHyperbolicFunction): | |
""" | |
``atanh(x)`` is the inverse hyperbolic tangent of ``x``. | |
The inverse hyperbolic tangent function. | |
Examples | |
======== | |
>>> from sympy import atanh | |
>>> from sympy.abc import x | |
>>> atanh(x).diff(x) | |
1/(1 - x**2) | |
See Also | |
======== | |
asinh, acosh, tanh | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/(1 - self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg.is_zero: | |
return S.Zero | |
elif arg is S.One: | |
return S.Infinity | |
elif arg is S.NegativeOne: | |
return S.NegativeInfinity | |
elif arg is S.Infinity: | |
return -I * atan(arg) | |
elif arg is S.NegativeInfinity: | |
return I * atan(-arg) | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
from sympy.calculus.accumulationbounds import AccumBounds | |
return I*AccumBounds(-pi/2, pi/2) | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return I * atan(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_zero: | |
return S.Zero | |
if isinstance(arg, tanh) and arg.args[0].is_number: | |
z = arg.args[0] | |
if z.is_real: | |
return z | |
r, i = match_real_imag(z) | |
if r is not None and i is not None: | |
f = floor(2*i/pi) | |
even = f.is_even | |
m = z - I*f*pi/2 | |
if even is True: | |
return m | |
elif even is False: | |
return m - I*pi/2 | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
return x**n / n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atanh | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0.is_zero: | |
return arg.as_leading_term(x) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
# Handling branch points | |
if x0 in (-S.One, S.One, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
# Handling points lying on branch cuts (-oo, -1] U [1, oo) | |
if (1 - x0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_negative: | |
return self.func(x0) - I*pi | |
elif im(ndir).is_positive: | |
if x0.is_positive: | |
return self.func(x0) + I*pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # atanh | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 in (S.One, S.NegativeOne): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-oo, -1] U [1, oo) | |
if (1 - arg0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_negative: | |
return res - I*pi | |
elif im(ndir).is_positive: | |
if arg0.is_positive: | |
return res + I*pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return (log(1 + x) - log(1 - x)) / 2 | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_asinh(self, x, **kwargs): | |
f = sqrt(1/(x**2 - 1)) | |
return (pi*x/(2*sqrt(-x**2)) - | |
sqrt(-x)*sqrt(1 - x**2)/sqrt(x)*f*asinh(f)) | |
def _eval_is_zero(self): | |
if self.args[0].is_zero: | |
return True | |
def _eval_is_extended_real(self): | |
return fuzzy_and([self.args[0].is_extended_real, (1 - self.args[0]).is_nonnegative, (self.args[0] + 1).is_nonnegative]) | |
def _eval_is_finite(self): | |
return fuzzy_not(fuzzy_or([(self.args[0] - 1).is_zero, (self.args[0] + 1).is_zero])) | |
def _eval_is_imaginary(self): | |
return self.args[0].is_imaginary | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return tanh | |
class acoth(InverseHyperbolicFunction): | |
""" | |
``acoth(x)`` is the inverse hyperbolic cotangent of ``x``. | |
The inverse hyperbolic cotangent function. | |
Examples | |
======== | |
>>> from sympy import acoth | |
>>> from sympy.abc import x | |
>>> acoth(x).diff(x) | |
1/(1 - x**2) | |
See Also | |
======== | |
asinh, acosh, coth | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/(1 - self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Zero | |
elif arg is S.NegativeInfinity: | |
return S.Zero | |
elif arg.is_zero: | |
return pi*I / 2 | |
elif arg is S.One: | |
return S.Infinity | |
elif arg is S.NegativeOne: | |
return S.NegativeInfinity | |
elif arg.is_negative: | |
return -cls(-arg) | |
else: | |
if arg is S.ComplexInfinity: | |
return S.Zero | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return -I * acot(i_coeff) | |
else: | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_zero: | |
return pi*I*S.Half | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return -I*pi/2 | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
return x**n / n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acoth | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.ComplexInfinity: | |
return (1/arg).as_leading_term(x) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
# Handling branch points | |
if x0 in (-S.One, S.One, S.Zero): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
# Handling points lying on branch cuts [-1, 1] | |
if x0.is_real and (1 - x0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_positive: | |
return self.func(x0) + I*pi | |
elif im(ndir).is_positive: | |
if x0.is_negative: | |
return self.func(x0) - I*pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # acoth | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 in (S.One, S.NegativeOne): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts [-1, 1] | |
if arg0.is_real and (1 - arg0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_positive: | |
return res + I*pi | |
elif im(ndir).is_positive: | |
if arg0.is_negative: | |
return res - I*pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return (log(1 + 1/x) - log(1 - 1/x)) / 2 | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_atanh(self, x, **kwargs): | |
return atanh(1/x) | |
def _eval_rewrite_as_asinh(self, x, **kwargs): | |
return (pi*I/2*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(1 + 1/x)*sqrt(x/(x + 1))) + | |
x*sqrt(1/x**2)*asinh(sqrt(1/(x**2 - 1)))) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return coth | |
def _eval_is_extended_real(self): | |
return fuzzy_and([self.args[0].is_extended_real, fuzzy_or([(self.args[0] - 1).is_extended_nonnegative, (self.args[0] + 1).is_extended_nonpositive])]) | |
def _eval_is_finite(self): | |
return fuzzy_not(fuzzy_or([(self.args[0] - 1).is_zero, (self.args[0] + 1).is_zero])) | |
class asech(InverseHyperbolicFunction): | |
""" | |
``asech(x)`` is the inverse hyperbolic secant of ``x``. | |
The inverse hyperbolic secant function. | |
Examples | |
======== | |
>>> from sympy import asech, sqrt, S | |
>>> from sympy.abc import x | |
>>> asech(x).diff(x) | |
-1/(x*sqrt(1 - x**2)) | |
>>> asech(1).diff(x) | |
0 | |
>>> asech(1) | |
0 | |
>>> asech(S(2)) | |
I*pi/3 | |
>>> asech(-sqrt(2)) | |
3*I*pi/4 | |
>>> asech((sqrt(6) - sqrt(2))) | |
I*pi/12 | |
See Also | |
======== | |
asinh, atanh, cosh, acoth | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function | |
.. [2] https://dlmf.nist.gov/4.37 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSech/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
z = self.args[0] | |
return -1/(z*sqrt(1 - z**2)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return pi*I / 2 | |
elif arg is S.NegativeInfinity: | |
return pi*I / 2 | |
elif arg.is_zero: | |
return S.Infinity | |
elif arg is S.One: | |
return S.Zero | |
elif arg is S.NegativeOne: | |
return pi*I | |
if arg.is_number: | |
cst_table = _asech_table() | |
if arg in cst_table: | |
if arg.is_extended_real: | |
return cst_table[arg]*I | |
return cst_table[arg] | |
if arg is S.ComplexInfinity: | |
from sympy.calculus.accumulationbounds import AccumBounds | |
return I*AccumBounds(-pi/2, pi/2) | |
if arg.is_zero: | |
return S.Infinity | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return log(2 / x) | |
elif n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2 and n > 2: | |
p = previous_terms[-2] | |
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) | |
else: | |
k = n // 2 | |
R = RisingFactorial(S.Half, k) * n | |
F = factorial(k) * n // 2 * n // 2 | |
return -1 * R / F * x**n / 4 | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asech | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
# Handling branch points | |
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
# Handling points lying on branch cuts (-oo, 0] U (1, oo) | |
if x0.is_negative or (1 - x0).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_positive: | |
if x0.is_positive or (x0 + 1).is_negative: | |
return -self.func(x0) | |
return self.func(x0) - 2*I*pi | |
elif not im(ndir).is_negative: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # asech | |
from sympy.series.order import O | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 is S.One: | |
t = Dummy('t', positive=True) | |
ser = asech(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One - self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
if arg0 is S.NegativeOne: | |
t = Dummy('t', positive=True) | |
ser = asech(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else I*pi + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-oo, 0] U (1, oo) | |
if arg0.is_negative or (1 - arg0).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_positive: | |
if arg0.is_positive or (arg0 + 1).is_negative: | |
return -res | |
return res - 2*I*pi | |
elif not im(ndir).is_negative: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return sech | |
def _eval_rewrite_as_log(self, arg, **kwargs): | |
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_acosh(self, arg, **kwargs): | |
return acosh(1/arg) | |
def _eval_rewrite_as_asinh(self, arg, **kwargs): | |
return sqrt(1/arg - 1)/sqrt(1 - 1/arg)*(I*asinh(I/arg, evaluate=False) | |
+ pi*S.Half) | |
def _eval_rewrite_as_atanh(self, x, **kwargs): | |
return (I*pi*(1 - sqrt(x)*sqrt(1/x) - I/2*sqrt(-x)/sqrt(x) - I/2*sqrt(x**2)/sqrt(-x**2)) | |
+ sqrt(1/(x + 1))*sqrt(x + 1)*atanh(sqrt(1 - x**2))) | |
def _eval_rewrite_as_acsch(self, x, **kwargs): | |
return sqrt(1/x - 1)/sqrt(1 - 1/x)*(pi/2 - I*acsch(I*x, evaluate=False)) | |
def _eval_is_extended_real(self): | |
return fuzzy_and([self.args[0].is_extended_real, self.args[0].is_nonnegative, (1 - self.args[0]).is_nonnegative]) | |
def _eval_is_finite(self): | |
return fuzzy_not(self.args[0].is_zero) | |
class acsch(InverseHyperbolicFunction): | |
""" | |
``acsch(x)`` is the inverse hyperbolic cosecant of ``x``. | |
The inverse hyperbolic cosecant function. | |
Examples | |
======== | |
>>> from sympy import acsch, sqrt, I | |
>>> from sympy.abc import x | |
>>> acsch(x).diff(x) | |
-1/(x**2*sqrt(1 + x**(-2))) | |
>>> acsch(1).diff(x) | |
0 | |
>>> acsch(1) | |
log(1 + sqrt(2)) | |
>>> acsch(I) | |
-I*pi/2 | |
>>> acsch(-2*I) | |
I*pi/6 | |
>>> acsch(I*(sqrt(6) - sqrt(2))) | |
-5*I*pi/12 | |
See Also | |
======== | |
asinh | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function | |
.. [2] https://dlmf.nist.gov/4.37 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCsch/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
z = self.args[0] | |
return -1/(z**2*sqrt(1 + 1/z**2)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Zero | |
elif arg is S.NegativeInfinity: | |
return S.Zero | |
elif arg.is_zero: | |
return S.ComplexInfinity | |
elif arg is S.One: | |
return log(1 + sqrt(2)) | |
elif arg is S.NegativeOne: | |
return - log(1 + sqrt(2)) | |
if arg.is_number: | |
cst_table = _acsch_table() | |
if arg in cst_table: | |
return cst_table[arg]*I | |
if arg is S.ComplexInfinity: | |
return S.Zero | |
if arg.is_infinite: | |
return S.Zero | |
if arg.is_zero: | |
return S.ComplexInfinity | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return log(2 / x) | |
elif n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2 and n > 2: | |
p = previous_terms[-2] | |
return -p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) | |
else: | |
k = n // 2 | |
R = RisingFactorial(S.Half, k) * n | |
F = factorial(k) * n // 2 * n // 2 | |
return S.NegativeOne**(k +1) * R / F * x**n / 4 | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsch | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
# Handling branch points | |
if x0 in (-I, I, S.Zero): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
if x0 is S.NaN: | |
expr = self.func(arg.as_leading_term(x)) | |
if expr.is_finite: | |
return expr | |
else: | |
return self | |
if x0 is S.ComplexInfinity: | |
return (1/arg).as_leading_term(x) | |
# Handling points lying on branch cuts (-I, I) | |
if x0.is_imaginary and (1 + x0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if re(ndir).is_positive: | |
if im(x0).is_positive: | |
return -self.func(x0) - I*pi | |
elif re(ndir).is_negative: | |
if im(x0).is_negative: | |
return -self.func(x0) + I*pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # acsch | |
from sympy.series.order import O | |
arg = self.args[0] | |
arg0 = arg.subs(x, 0) | |
# Handling branch points | |
if arg0 is I: | |
t = Dummy('t', positive=True) | |
ser = acsch(I + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = -I + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else -I*pi/2 + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
res = ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
return res | |
if arg0 == S.NegativeOne*I: | |
t = Dummy('t', positive=True) | |
ser = acsch(-I + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = I + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else I*pi/2 + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-I, I) | |
if arg0.is_imaginary and (1 + arg0**2).is_positive: | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if re(ndir).is_positive: | |
if im(arg0).is_positive: | |
return -res - I*pi | |
elif re(ndir).is_negative: | |
if im(arg0).is_negative: | |
return -res + I*pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return csch | |
def _eval_rewrite_as_log(self, arg, **kwargs): | |
return log(1/arg + sqrt(1/arg**2 + 1)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_asinh(self, arg, **kwargs): | |
return asinh(1/arg) | |
def _eval_rewrite_as_acosh(self, arg, **kwargs): | |
return I*(sqrt(1 - I/arg)/sqrt(I/arg - 1)* | |
acosh(I/arg, evaluate=False) - pi*S.Half) | |
def _eval_rewrite_as_atanh(self, arg, **kwargs): | |
arg2 = arg**2 | |
arg2p1 = arg2 + 1 | |
return sqrt(-arg2)/arg*(pi*S.Half - | |
sqrt(-arg2p1**2)/arg2p1*atanh(sqrt(arg2p1))) | |
def _eval_is_zero(self): | |
return self.args[0].is_infinite | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
def _eval_is_finite(self): | |
return fuzzy_not(self.args[0].is_zero) | |