Spaces:
Sleeping
Sleeping
""" Elliptic Integrals. """ | |
from sympy.core import S, pi, I, Rational | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.core.symbol import Dummy,uniquely_named_symbol | |
from sympy.functions.elementary.complexes import sign | |
from sympy.functions.elementary.hyperbolic import atanh | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import sin, tan | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.special.hyper import hyper, meijerg | |
class elliptic_k(Function): | |
r""" | |
The complete elliptic integral of the first kind, defined by | |
.. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right) | |
where $F\left(z\middle| m\right)$ is the Legendre incomplete | |
elliptic integral of the first kind. | |
Explanation | |
=========== | |
The function $K(m)$ is a single-valued function on the complex | |
plane with branch cut along the interval $(1, \infty)$. | |
Note that our notation defines the incomplete elliptic integral | |
in terms of the parameter $m$ instead of the elliptic modulus | |
(eccentricity) $k$. | |
In this case, the parameter $m$ is defined as $m=k^2$. | |
Examples | |
======== | |
>>> from sympy import elliptic_k, I | |
>>> from sympy.abc import m | |
>>> elliptic_k(0) | |
pi/2 | |
>>> elliptic_k(1.0 + I) | |
1.50923695405127 + 0.625146415202697*I | |
>>> elliptic_k(m).series(n=3) | |
pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3) | |
See Also | |
======== | |
elliptic_f | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals | |
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticK | |
""" | |
def eval(cls, m): | |
if m.is_zero: | |
return pi*S.Half | |
elif m is S.Half: | |
return 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2 | |
elif m is S.One: | |
return S.ComplexInfinity | |
elif m is S.NegativeOne: | |
return gamma(Rational(1, 4))**2/(4*sqrt(2*pi)) | |
elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity, | |
I*S.NegativeInfinity, S.ComplexInfinity): | |
return S.Zero | |
def fdiff(self, argindex=1): | |
m = self.args[0] | |
return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m)) | |
def _eval_conjugate(self): | |
m = self.args[0] | |
if (m.is_real and (m - 1).is_positive) is False: | |
return self.func(m.conjugate()) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
from sympy.simplify import hyperexpand | |
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) | |
def _eval_rewrite_as_hyper(self, m, **kwargs): | |
return pi*S.Half*hyper((S.Half, S.Half), (S.One,), m) | |
def _eval_rewrite_as_meijerg(self, m, **kwargs): | |
return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2 | |
def _eval_is_zero(self): | |
m = self.args[0] | |
if m.is_infinite: | |
return True | |
def _eval_rewrite_as_Integral(self, *args, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', args).name) | |
m = self.args[0] | |
return Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)) | |
class elliptic_f(Function): | |
r""" | |
The Legendre incomplete elliptic integral of the first | |
kind, defined by | |
.. math:: F\left(z\middle| m\right) = | |
\int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}} | |
Explanation | |
=========== | |
This function reduces to a complete elliptic integral of | |
the first kind, $K(m)$, when $z = \pi/2$. | |
Note that our notation defines the incomplete elliptic integral | |
in terms of the parameter $m$ instead of the elliptic modulus | |
(eccentricity) $k$. | |
In this case, the parameter $m$ is defined as $m=k^2$. | |
Examples | |
======== | |
>>> from sympy import elliptic_f, I | |
>>> from sympy.abc import z, m | |
>>> elliptic_f(z, m).series(z) | |
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) | |
>>> elliptic_f(3.0 + I/2, 1.0 + I) | |
2.909449841483 + 1.74720545502474*I | |
See Also | |
======== | |
elliptic_k | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals | |
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticF | |
""" | |
def eval(cls, z, m): | |
if z.is_zero: | |
return S.Zero | |
if m.is_zero: | |
return z | |
k = 2*z/pi | |
if k.is_integer: | |
return k*elliptic_k(m) | |
elif m in (S.Infinity, S.NegativeInfinity): | |
return S.Zero | |
elif z.could_extract_minus_sign(): | |
return -elliptic_f(-z, m) | |
def fdiff(self, argindex=1): | |
z, m = self.args | |
fm = sqrt(1 - m*sin(z)**2) | |
if argindex == 1: | |
return 1/fm | |
elif argindex == 2: | |
return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) - | |
sin(2*z)/(4*(1 - m)*fm)) | |
raise ArgumentIndexError(self, argindex) | |
def _eval_conjugate(self): | |
z, m = self.args | |
if (m.is_real and (m - 1).is_positive) is False: | |
return self.func(z.conjugate(), m.conjugate()) | |
def _eval_rewrite_as_Integral(self, *args, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', args).name) | |
z, m = self.args[0], self.args[1] | |
return Integral(1/(sqrt(1 - m*sin(t)**2)), (t, 0, z)) | |
def _eval_is_zero(self): | |
z, m = self.args | |
if z.is_zero: | |
return True | |
if m.is_extended_real and m.is_infinite: | |
return True | |
class elliptic_e(Function): | |
r""" | |
Called with two arguments $z$ and $m$, evaluates the | |
incomplete elliptic integral of the second kind, defined by | |
.. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt | |
Called with a single argument $m$, evaluates the Legendre complete | |
elliptic integral of the second kind | |
.. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right) | |
Explanation | |
=========== | |
The function $E(m)$ is a single-valued function on the complex | |
plane with branch cut along the interval $(1, \infty)$. | |
Note that our notation defines the incomplete elliptic integral | |
in terms of the parameter $m$ instead of the elliptic modulus | |
(eccentricity) $k$. | |
In this case, the parameter $m$ is defined as $m=k^2$. | |
Examples | |
======== | |
>>> from sympy import elliptic_e, I | |
>>> from sympy.abc import z, m | |
>>> elliptic_e(z, m).series(z) | |
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) | |
>>> elliptic_e(m).series(n=4) | |
pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) | |
>>> elliptic_e(1 + I, 2 - I/2).n() | |
1.55203744279187 + 0.290764986058437*I | |
>>> elliptic_e(0) | |
pi/2 | |
>>> elliptic_e(2.0 - I) | |
0.991052601328069 + 0.81879421395609*I | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals | |
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticE2 | |
.. [3] https://functions.wolfram.com/EllipticIntegrals/EllipticE | |
""" | |
def eval(cls, m, z=None): | |
if z is not None: | |
z, m = m, z | |
k = 2*z/pi | |
if m.is_zero: | |
return z | |
if z.is_zero: | |
return S.Zero | |
elif k.is_integer: | |
return k*elliptic_e(m) | |
elif m in (S.Infinity, S.NegativeInfinity): | |
return S.ComplexInfinity | |
elif z.could_extract_minus_sign(): | |
return -elliptic_e(-z, m) | |
else: | |
if m.is_zero: | |
return pi/2 | |
elif m is S.One: | |
return S.One | |
elif m is S.Infinity: | |
return I*S.Infinity | |
elif m is S.NegativeInfinity: | |
return S.Infinity | |
elif m is S.ComplexInfinity: | |
return S.ComplexInfinity | |
def fdiff(self, argindex=1): | |
if len(self.args) == 2: | |
z, m = self.args | |
if argindex == 1: | |
return sqrt(1 - m*sin(z)**2) | |
elif argindex == 2: | |
return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m) | |
else: | |
m = self.args[0] | |
if argindex == 1: | |
return (elliptic_e(m) - elliptic_k(m))/(2*m) | |
raise ArgumentIndexError(self, argindex) | |
def _eval_conjugate(self): | |
if len(self.args) == 2: | |
z, m = self.args | |
if (m.is_real and (m - 1).is_positive) is False: | |
return self.func(z.conjugate(), m.conjugate()) | |
else: | |
m = self.args[0] | |
if (m.is_real and (m - 1).is_positive) is False: | |
return self.func(m.conjugate()) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
from sympy.simplify import hyperexpand | |
if len(self.args) == 1: | |
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) | |
return super()._eval_nseries(x, n=n, logx=logx) | |
def _eval_rewrite_as_hyper(self, *args, **kwargs): | |
if len(args) == 1: | |
m = args[0] | |
return (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), m) | |
def _eval_rewrite_as_meijerg(self, *args, **kwargs): | |
if len(args) == 1: | |
m = args[0] | |
return -meijerg(((S.Half, Rational(3, 2)), []), \ | |
((S.Zero,), (S.Zero,)), -m)/4 | |
def _eval_rewrite_as_Integral(self, *args, **kwargs): | |
from sympy.integrals.integrals import Integral | |
z, m = (pi/2, self.args[0]) if len(self.args) == 1 else self.args | |
t = Dummy(uniquely_named_symbol('t', args).name) | |
return Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)) | |
class elliptic_pi(Function): | |
r""" | |
Called with three arguments $n$, $z$ and $m$, evaluates the | |
Legendre incomplete elliptic integral of the third kind, defined by | |
.. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} | |
{\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}} | |
Called with two arguments $n$ and $m$, evaluates the complete | |
elliptic integral of the third kind: | |
.. math:: \Pi\left(n\middle| m\right) = | |
\Pi\left(n; \tfrac{\pi}{2}\middle| m\right) | |
Explanation | |
=========== | |
Note that our notation defines the incomplete elliptic integral | |
in terms of the parameter $m$ instead of the elliptic modulus | |
(eccentricity) $k$. | |
In this case, the parameter $m$ is defined as $m=k^2$. | |
Examples | |
======== | |
>>> from sympy import elliptic_pi, I | |
>>> from sympy.abc import z, n, m | |
>>> elliptic_pi(n, z, m).series(z, n=4) | |
z + z**3*(m/6 + n/3) + O(z**4) | |
>>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) | |
2.50232379629182 - 0.760939574180767*I | |
>>> elliptic_pi(0, 0) | |
pi/2 | |
>>> elliptic_pi(1.0 - I/3, 2.0 + I) | |
3.29136443417283 + 0.32555634906645*I | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals | |
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticPi3 | |
.. [3] https://functions.wolfram.com/EllipticIntegrals/EllipticPi | |
""" | |
def eval(cls, n, m, z=None): | |
if z is not None: | |
n, z, m = n, m, z | |
if n.is_zero: | |
return elliptic_f(z, m) | |
elif n is S.One: | |
return (elliptic_f(z, m) + | |
(sqrt(1 - m*sin(z)**2)*tan(z) - | |
elliptic_e(z, m))/(1 - m)) | |
k = 2*z/pi | |
if k.is_integer: | |
return k*elliptic_pi(n, m) | |
elif m.is_zero: | |
return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) | |
elif n == m: | |
return (elliptic_f(z, n) - elliptic_pi(1, z, n) + | |
tan(z)/sqrt(1 - n*sin(z)**2)) | |
elif n in (S.Infinity, S.NegativeInfinity): | |
return S.Zero | |
elif m in (S.Infinity, S.NegativeInfinity): | |
return S.Zero | |
elif z.could_extract_minus_sign(): | |
return -elliptic_pi(n, -z, m) | |
if n.is_zero: | |
return elliptic_f(z, m) | |
if m.is_extended_real and m.is_infinite or \ | |
n.is_extended_real and n.is_infinite: | |
return S.Zero | |
else: | |
if n.is_zero: | |
return elliptic_k(m) | |
elif n is S.One: | |
return S.ComplexInfinity | |
elif m.is_zero: | |
return pi/(2*sqrt(1 - n)) | |
elif m == S.One: | |
return S.NegativeInfinity/sign(n - 1) | |
elif n == m: | |
return elliptic_e(n)/(1 - n) | |
elif n in (S.Infinity, S.NegativeInfinity): | |
return S.Zero | |
elif m in (S.Infinity, S.NegativeInfinity): | |
return S.Zero | |
if n.is_zero: | |
return elliptic_k(m) | |
if m.is_extended_real and m.is_infinite or \ | |
n.is_extended_real and n.is_infinite: | |
return S.Zero | |
def _eval_conjugate(self): | |
if len(self.args) == 3: | |
n, z, m = self.args | |
if (n.is_real and (n - 1).is_positive) is False and \ | |
(m.is_real and (m - 1).is_positive) is False: | |
return self.func(n.conjugate(), z.conjugate(), m.conjugate()) | |
else: | |
n, m = self.args | |
return self.func(n.conjugate(), m.conjugate()) | |
def fdiff(self, argindex=1): | |
if len(self.args) == 3: | |
n, z, m = self.args | |
fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2 | |
if argindex == 1: | |
return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n + | |
(n**2 - m)*elliptic_pi(n, z, m)/n - | |
n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1)) | |
elif argindex == 2: | |
return 1/(fm*fn) | |
elif argindex == 3: | |
return (elliptic_e(z, m)/(m - 1) + | |
elliptic_pi(n, z, m) - | |
m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m)) | |
else: | |
n, m = self.args | |
if argindex == 1: | |
return (elliptic_e(m) + (m - n)*elliptic_k(m)/n + | |
(n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1)) | |
elif argindex == 2: | |
return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m)) | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Integral(self, *args, **kwargs): | |
from sympy.integrals.integrals import Integral | |
if len(self.args) == 2: | |
n, m, z = self.args[0], self.args[1], pi/2 | |
else: | |
n, z, m = self.args | |
t = Dummy(uniquely_named_symbol('t', args).name) | |
return Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z)) | |