Spaces:
Sleeping
Sleeping
""" | |
This module mainly implements special orthogonal polynomials. | |
See also functions.combinatorial.numbers which contains some | |
combinatorial polynomials. | |
""" | |
from sympy.core import Rational | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy | |
from sympy.functions.combinatorial.factorials import binomial, factorial, RisingFactorial | |
from sympy.functions.elementary.complexes import re | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.integers import floor | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import cos, sec | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.special.hyper import hyper | |
from sympy.polys.orthopolys import (chebyshevt_poly, chebyshevu_poly, | |
gegenbauer_poly, hermite_poly, hermite_prob_poly, | |
jacobi_poly, laguerre_poly, legendre_poly) | |
_x = Dummy('x') | |
class OrthogonalPolynomial(Function): | |
"""Base class for orthogonal polynomials. | |
""" | |
def _eval_at_order(cls, n, x): | |
if n.is_integer and n >= 0: | |
return cls._ortho_poly(int(n), _x).subs(_x, x) | |
def _eval_conjugate(self): | |
return self.func(self.args[0], self.args[1].conjugate()) | |
#---------------------------------------------------------------------------- | |
# Jacobi polynomials | |
# | |
class jacobi(OrthogonalPolynomial): | |
r""" | |
Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. | |
Explanation | |
=========== | |
``jacobi(n, alpha, beta, x)`` gives the $n$th Jacobi polynomial | |
in $x$, $P_n^{\left(\alpha, \beta\right)}(x)$. | |
The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect | |
to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. | |
Examples | |
======== | |
>>> from sympy import jacobi, S, conjugate, diff | |
>>> from sympy.abc import a, b, n, x | |
>>> jacobi(0, a, b, x) | |
1 | |
>>> jacobi(1, a, b, x) | |
a/2 - b/2 + x*(a/2 + b/2 + 1) | |
>>> jacobi(2, a, b, x) | |
a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2 | |
>>> jacobi(n, a, b, x) | |
jacobi(n, a, b, x) | |
>>> jacobi(n, a, a, x) | |
RisingFactorial(a + 1, n)*gegenbauer(n, | |
a + 1/2, x)/RisingFactorial(2*a + 1, n) | |
>>> jacobi(n, 0, 0, x) | |
legendre(n, x) | |
>>> jacobi(n, S(1)/2, S(1)/2, x) | |
RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1) | |
>>> jacobi(n, -S(1)/2, -S(1)/2, x) | |
RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n) | |
>>> jacobi(n, a, b, -x) | |
(-1)**n*jacobi(n, b, a, x) | |
>>> jacobi(n, a, b, 0) | |
gamma(a + n + 1)*hyper((-n, -b - n), (a + 1,), -1)/(2**n*factorial(n)*gamma(a + 1)) | |
>>> jacobi(n, a, b, 1) | |
RisingFactorial(a + 1, n)/factorial(n) | |
>>> conjugate(jacobi(n, a, b, x)) | |
jacobi(n, conjugate(a), conjugate(b), conjugate(x)) | |
>>> diff(jacobi(n,a,b,x), x) | |
(a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x) | |
See Also | |
======== | |
gegenbauer, | |
chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly, | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials | |
.. [2] https://mathworld.wolfram.com/JacobiPolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/JacobiP/ | |
""" | |
def eval(cls, n, a, b, x): | |
# Simplify to other polynomials | |
# P^{a, a}_n(x) | |
if a == b: | |
if a == Rational(-1, 2): | |
return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x) | |
elif a.is_zero: | |
return legendre(n, x) | |
elif a == S.Half: | |
return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x) | |
else: | |
return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x) | |
elif b == -a: | |
# P^{a, -a}_n(x) | |
return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x) | |
if not n.is_Number: | |
# Symbolic result P^{a,b}_n(x) | |
# P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * jacobi(n, b, a, -x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * | |
hyper([-b - n, -n], [a + 1], -1)) | |
if x == S.One: | |
return RisingFactorial(a + 1, n) / factorial(n) | |
elif x is S.Infinity: | |
if n.is_positive: | |
# Make sure a+b+2*n \notin Z | |
if (a + b + 2*n).is_integer: | |
raise ValueError("Error. a + b + 2*n should not be an integer.") | |
return RisingFactorial(a + b + n + 1, n) * S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
return jacobi_poly(n, a, b, x) | |
def fdiff(self, argindex=4): | |
from sympy.concrete.summations import Sum | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt a | |
n, a, b, x = self.args | |
k = Dummy("k") | |
f1 = 1 / (a + b + n + k + 1) | |
f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) / | |
((n - k) * RisingFactorial(a + b + k + 1, n - k))) | |
return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) | |
elif argindex == 3: | |
# Diff wrt b | |
n, a, b, x = self.args | |
k = Dummy("k") | |
f1 = 1 / (a + b + n + k + 1) | |
f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) / | |
((n - k) * RisingFactorial(a + b + k + 1, n - k))) | |
return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) | |
elif argindex == 4: | |
# Diff wrt x | |
n, a, b, x = self.args | |
return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, a, b, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
# Make sure n \in N | |
if n.is_negative or n.is_integer is False: | |
raise ValueError("Error: n should be a non-negative integer.") | |
k = Dummy("k") | |
kern = (RisingFactorial(-n, k) * RisingFactorial(a + b + n + 1, k) * RisingFactorial(a + k + 1, n - k) / | |
factorial(k) * ((1 - x)/2)**k) | |
return 1 / factorial(n) * Sum(kern, (k, 0, n)) | |
def _eval_rewrite_as_polynomial(self, n, a, b, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, a, b, x, **kwargs) | |
def _eval_conjugate(self): | |
n, a, b, x = self.args | |
return self.func(n, a.conjugate(), b.conjugate(), x.conjugate()) | |
def jacobi_normalized(n, a, b, x): | |
r""" | |
Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. | |
Explanation | |
=========== | |
``jacobi_normalized(n, alpha, beta, x)`` gives the $n$th | |
Jacobi polynomial in $x$, $P_n^{\left(\alpha, \beta\right)}(x)$. | |
The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect | |
to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. | |
This functions returns the polynomials normilzed: | |
.. math:: | |
\int_{-1}^{1} | |
P_m^{\left(\alpha, \beta\right)}(x) | |
P_n^{\left(\alpha, \beta\right)}(x) | |
(1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x | |
= \delta_{m,n} | |
Examples | |
======== | |
>>> from sympy import jacobi_normalized | |
>>> from sympy.abc import n,a,b,x | |
>>> jacobi_normalized(n, a, b, x) | |
jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) | |
Parameters | |
========== | |
n : integer degree of polynomial | |
a : alpha value | |
b : beta value | |
x : symbol | |
See Also | |
======== | |
gegenbauer, | |
chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly, | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials | |
.. [2] https://mathworld.wolfram.com/JacobiPolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/JacobiP/ | |
""" | |
nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) | |
/ (2*n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1))) | |
return jacobi(n, a, b, x) / sqrt(nfactor) | |
#---------------------------------------------------------------------------- | |
# Gegenbauer polynomials | |
# | |
class gegenbauer(OrthogonalPolynomial): | |
r""" | |
Gegenbauer polynomial $C_n^{\left(\alpha\right)}(x)$. | |
Explanation | |
=========== | |
``gegenbauer(n, alpha, x)`` gives the $n$th Gegenbauer polynomial | |
in $x$, $C_n^{\left(\alpha\right)}(x)$. | |
The Gegenbauer polynomials are orthogonal on $[-1, 1]$ with | |
respect to the weight $\left(1-x^2\right)^{\alpha-\frac{1}{2}}$. | |
Examples | |
======== | |
>>> from sympy import gegenbauer, conjugate, diff | |
>>> from sympy.abc import n,a,x | |
>>> gegenbauer(0, a, x) | |
1 | |
>>> gegenbauer(1, a, x) | |
2*a*x | |
>>> gegenbauer(2, a, x) | |
-a + x**2*(2*a**2 + 2*a) | |
>>> gegenbauer(3, a, x) | |
x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a) | |
>>> gegenbauer(n, a, x) | |
gegenbauer(n, a, x) | |
>>> gegenbauer(n, a, -x) | |
(-1)**n*gegenbauer(n, a, x) | |
>>> gegenbauer(n, a, 0) | |
2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(1/2 - n/2)*gamma(n + 1)) | |
>>> gegenbauer(n, a, 1) | |
gamma(2*a + n)/(gamma(2*a)*gamma(n + 1)) | |
>>> conjugate(gegenbauer(n, a, x)) | |
gegenbauer(n, conjugate(a), conjugate(x)) | |
>>> diff(gegenbauer(n, a, x), x) | |
2*a*gegenbauer(n - 1, a + 1, x) | |
See Also | |
======== | |
jacobi, | |
chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Gegenbauer_polynomials | |
.. [2] https://mathworld.wolfram.com/GegenbauerPolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/GegenbauerC3/ | |
""" | |
def eval(cls, n, a, x): | |
# For negative n the polynomials vanish | |
# See https://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ | |
if n.is_negative: | |
return S.Zero | |
# Some special values for fixed a | |
if a == S.Half: | |
return legendre(n, x) | |
elif a == S.One: | |
return chebyshevu(n, x) | |
elif a == S.NegativeOne: | |
return S.Zero | |
if not n.is_Number: | |
# Handle this before the general sign extraction rule | |
if x == S.NegativeOne: | |
if (re(a) > S.Half) == True: | |
return S.ComplexInfinity | |
else: | |
return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / | |
(gamma(2*a) * gamma(n+1))) | |
# Symbolic result C^a_n(x) | |
# C^a_n(-x) ---> (-1)**n * C^a_n(x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * gegenbauer(n, a, -x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) / | |
(gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) ) | |
if x == S.One: | |
return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1)) | |
elif x is S.Infinity: | |
if n.is_positive: | |
return RisingFactorial(a, n) * S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
return gegenbauer_poly(n, a, x) | |
def fdiff(self, argindex=3): | |
from sympy.concrete.summations import Sum | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt a | |
n, a, x = self.args | |
k = Dummy("k") | |
factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k + | |
n + 2*a) * (n - k)) | |
factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \ | |
2 / (k + n + 2*a) | |
kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x) | |
return Sum(kern, (k, 0, n - 1)) | |
elif argindex == 3: | |
# Diff wrt x | |
n, a, x = self.args | |
return 2*a*gegenbauer(n - 1, a + 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, a, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) / | |
(factorial(k) * factorial(n - 2*k))) | |
return Sum(kern, (k, 0, floor(n/2))) | |
def _eval_rewrite_as_polynomial(self, n, a, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, a, x, **kwargs) | |
def _eval_conjugate(self): | |
n, a, x = self.args | |
return self.func(n, a.conjugate(), x.conjugate()) | |
#---------------------------------------------------------------------------- | |
# Chebyshev polynomials of first and second kind | |
# | |
class chebyshevt(OrthogonalPolynomial): | |
r""" | |
Chebyshev polynomial of the first kind, $T_n(x)$. | |
Explanation | |
=========== | |
``chebyshevt(n, x)`` gives the $n$th Chebyshev polynomial (of the first | |
kind) in $x$, $T_n(x)$. | |
The Chebyshev polynomials of the first kind are orthogonal on | |
$[-1, 1]$ with respect to the weight $\frac{1}{\sqrt{1-x^2}}$. | |
Examples | |
======== | |
>>> from sympy import chebyshevt, diff | |
>>> from sympy.abc import n,x | |
>>> chebyshevt(0, x) | |
1 | |
>>> chebyshevt(1, x) | |
x | |
>>> chebyshevt(2, x) | |
2*x**2 - 1 | |
>>> chebyshevt(n, x) | |
chebyshevt(n, x) | |
>>> chebyshevt(n, -x) | |
(-1)**n*chebyshevt(n, x) | |
>>> chebyshevt(-n, x) | |
chebyshevt(n, x) | |
>>> chebyshevt(n, 0) | |
cos(pi*n/2) | |
>>> chebyshevt(n, -1) | |
(-1)**n | |
>>> diff(chebyshevt(n, x), x) | |
n*chebyshevu(n - 1, x) | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial | |
.. [2] https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html | |
.. [3] https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html | |
.. [4] https://functions.wolfram.com/Polynomials/ChebyshevT/ | |
.. [5] https://functions.wolfram.com/Polynomials/ChebyshevU/ | |
""" | |
_ortho_poly = staticmethod(chebyshevt_poly) | |
def eval(cls, n, x): | |
if not n.is_Number: | |
# Symbolic result T_n(x) | |
# T_n(-x) ---> (-1)**n * T_n(x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * chebyshevt(n, -x) | |
# T_{-n}(x) ---> T_n(x) | |
if n.could_extract_minus_sign(): | |
return chebyshevt(-n, x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return cos(S.Half * S.Pi * n) | |
if x == S.One: | |
return S.One | |
elif x is S.Infinity: | |
return S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
if n.is_negative: | |
# T_{-n}(x) == T_n(x) | |
return cls._eval_at_order(-n, x) | |
else: | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt x | |
n, x = self.args | |
return n * chebyshevu(n - 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k) | |
return Sum(kern, (k, 0, floor(n/2))) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
class chebyshevu(OrthogonalPolynomial): | |
r""" | |
Chebyshev polynomial of the second kind, $U_n(x)$. | |
Explanation | |
=========== | |
``chebyshevu(n, x)`` gives the $n$th Chebyshev polynomial of the second | |
kind in x, $U_n(x)$. | |
The Chebyshev polynomials of the second kind are orthogonal on | |
$[-1, 1]$ with respect to the weight $\sqrt{1-x^2}$. | |
Examples | |
======== | |
>>> from sympy import chebyshevu, diff | |
>>> from sympy.abc import n,x | |
>>> chebyshevu(0, x) | |
1 | |
>>> chebyshevu(1, x) | |
2*x | |
>>> chebyshevu(2, x) | |
4*x**2 - 1 | |
>>> chebyshevu(n, x) | |
chebyshevu(n, x) | |
>>> chebyshevu(n, -x) | |
(-1)**n*chebyshevu(n, x) | |
>>> chebyshevu(-n, x) | |
-chebyshevu(n - 2, x) | |
>>> chebyshevu(n, 0) | |
cos(pi*n/2) | |
>>> chebyshevu(n, 1) | |
n + 1 | |
>>> diff(chebyshevu(n, x), x) | |
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial | |
.. [2] https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html | |
.. [3] https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html | |
.. [4] https://functions.wolfram.com/Polynomials/ChebyshevT/ | |
.. [5] https://functions.wolfram.com/Polynomials/ChebyshevU/ | |
""" | |
_ortho_poly = staticmethod(chebyshevu_poly) | |
def eval(cls, n, x): | |
if not n.is_Number: | |
# Symbolic result U_n(x) | |
# U_n(-x) ---> (-1)**n * U_n(x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * chebyshevu(n, -x) | |
# U_{-n}(x) ---> -U_{n-2}(x) | |
if n.could_extract_minus_sign(): | |
if n == S.NegativeOne: | |
# n can not be -1 here | |
return S.Zero | |
elif not (-n - 2).could_extract_minus_sign(): | |
return -chebyshevu(-n - 2, x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return cos(S.Half * S.Pi * n) | |
if x == S.One: | |
return S.One + n | |
elif x is S.Infinity: | |
return S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
if n.is_negative: | |
# U_{-n}(x) ---> -U_{n-2}(x) | |
if n == S.NegativeOne: | |
return S.Zero | |
else: | |
return -cls._eval_at_order(-n - 2, x) | |
else: | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt x | |
n, x = self.args | |
return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = S.NegativeOne**k * factorial( | |
n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k)) | |
return Sum(kern, (k, 0, floor(n/2))) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
class chebyshevt_root(Function): | |
r""" | |
``chebyshev_root(n, k)`` returns the $k$th root (indexed from zero) of | |
the $n$th Chebyshev polynomial of the first kind; that is, if | |
$0 \le k < n$, ``chebyshevt(n, chebyshevt_root(n, k)) == 0``. | |
Examples | |
======== | |
>>> from sympy import chebyshevt, chebyshevt_root | |
>>> chebyshevt_root(3, 2) | |
-sqrt(3)/2 | |
>>> chebyshevt(3, chebyshevt_root(3, 2)) | |
0 | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
""" | |
def eval(cls, n, k): | |
if not ((0 <= k) and (k < n)): | |
raise ValueError("must have 0 <= k < n, " | |
"got k = %s and n = %s" % (k, n)) | |
return cos(S.Pi*(2*k + 1)/(2*n)) | |
class chebyshevu_root(Function): | |
r""" | |
``chebyshevu_root(n, k)`` returns the $k$th root (indexed from zero) of the | |
$n$th Chebyshev polynomial of the second kind; that is, if $0 \le k < n$, | |
``chebyshevu(n, chebyshevu_root(n, k)) == 0``. | |
Examples | |
======== | |
>>> from sympy import chebyshevu, chebyshevu_root | |
>>> chebyshevu_root(3, 2) | |
-sqrt(2)/2 | |
>>> chebyshevu(3, chebyshevu_root(3, 2)) | |
0 | |
See Also | |
======== | |
chebyshevt, chebyshevt_root, chebyshevu, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
""" | |
def eval(cls, n, k): | |
if not ((0 <= k) and (k < n)): | |
raise ValueError("must have 0 <= k < n, " | |
"got k = %s and n = %s" % (k, n)) | |
return cos(S.Pi*(k + 1)/(n + 1)) | |
#---------------------------------------------------------------------------- | |
# Legendre polynomials and Associated Legendre polynomials | |
# | |
class legendre(OrthogonalPolynomial): | |
r""" | |
``legendre(n, x)`` gives the $n$th Legendre polynomial of $x$, $P_n(x)$ | |
Explanation | |
=========== | |
The Legendre polynomials are orthogonal on $[-1, 1]$ with respect to | |
the constant weight 1. They satisfy $P_n(1) = 1$ for all $n$; further, | |
$P_n$ is odd for odd $n$ and even for even $n$. | |
Examples | |
======== | |
>>> from sympy import legendre, diff | |
>>> from sympy.abc import x, n | |
>>> legendre(0, x) | |
1 | |
>>> legendre(1, x) | |
x | |
>>> legendre(2, x) | |
3*x**2/2 - 1/2 | |
>>> legendre(n, x) | |
legendre(n, x) | |
>>> diff(legendre(n,x), x) | |
n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1) | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Legendre_polynomial | |
.. [2] https://mathworld.wolfram.com/LegendrePolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/LegendreP/ | |
.. [4] https://functions.wolfram.com/Polynomials/LegendreP2/ | |
""" | |
_ortho_poly = staticmethod(legendre_poly) | |
def eval(cls, n, x): | |
if not n.is_Number: | |
# Symbolic result L_n(x) | |
# L_n(-x) ---> (-1)**n * L_n(x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * legendre(n, -x) | |
# L_{-n}(x) ---> L_{n-1}(x) | |
if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): | |
return legendre(-n - S.One, x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2)) | |
elif x == S.One: | |
return S.One | |
elif x is S.Infinity: | |
return S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial; | |
# L_{-n}(x) ---> L_{n-1}(x) | |
if n.is_negative: | |
n = -n - S.One | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt x | |
# Find better formula, this is unsuitable for x = +/-1 | |
# https://www.autodiff.org/ad16/Oral/Buecker_Legendre.pdf says | |
# at x = 1: | |
# n*(n + 1)/2 , m = 0 | |
# oo , m = 1 | |
# -(n-1)*n*(n+1)*(n+2)/4 , m = 2 | |
# 0 , m = 3, 4, ..., n | |
# | |
# at x = -1 | |
# (-1)**(n+1)*n*(n + 1)/2 , m = 0 | |
# (-1)**n*oo , m = 1 | |
# (-1)**n*(n-1)*n*(n+1)*(n+2)/4 , m = 2 | |
# 0 , m = 3, 4, ..., n | |
n, x = self.args | |
return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = S.NegativeOne**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k | |
return Sum(kern, (k, 0, n)) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
class assoc_legendre(Function): | |
r""" | |
``assoc_legendre(n, m, x)`` gives $P_n^m(x)$, where $n$ and $m$ are | |
the degree and order or an expression which is related to the nth | |
order Legendre polynomial, $P_n(x)$ in the following manner: | |
.. math:: | |
P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} | |
\frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m} | |
Explanation | |
=========== | |
Associated Legendre polynomials are orthogonal on $[-1, 1]$ with: | |
- weight $= 1$ for the same $m$ and different $n$. | |
- weight $= \frac{1}{1-x^2}$ for the same $n$ and different $m$. | |
Examples | |
======== | |
>>> from sympy import assoc_legendre | |
>>> from sympy.abc import x, m, n | |
>>> assoc_legendre(0,0, x) | |
1 | |
>>> assoc_legendre(1,0, x) | |
x | |
>>> assoc_legendre(1,1, x) | |
-sqrt(1 - x**2) | |
>>> assoc_legendre(n,m,x) | |
assoc_legendre(n, m, x) | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, | |
hermite, hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials | |
.. [2] https://mathworld.wolfram.com/LegendrePolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/LegendreP/ | |
.. [4] https://functions.wolfram.com/Polynomials/LegendreP2/ | |
""" | |
def _eval_at_order(cls, n, m): | |
P = legendre_poly(n, _x, polys=True).diff((_x, m)) | |
return S.NegativeOne**m * (1 - _x**2)**Rational(m, 2) * P.as_expr() | |
def eval(cls, n, m, x): | |
if m.could_extract_minus_sign(): | |
# P^{-m}_n ---> F * P^m_n | |
return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x) | |
if m == 0: | |
# P^0_n ---> L_n | |
return legendre(n, x) | |
if x == 0: | |
return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2)) | |
if n.is_Number and m.is_Number and n.is_integer and m.is_integer: | |
if n.is_negative: | |
raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n)) | |
if abs(m) > n: | |
raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m)) | |
return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x) | |
def fdiff(self, argindex=3): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt m | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 3: | |
# Diff wrt x | |
# Find better formula, this is unsuitable for x = 1 | |
n, m, x = self.args | |
return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, m, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial( | |
k)*factorial(n - 2*k - m))*S.NegativeOne**k*x**(n - m - 2*k) | |
return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half))) | |
def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, m, x, **kwargs) | |
def _eval_conjugate(self): | |
n, m, x = self.args | |
return self.func(n, m.conjugate(), x.conjugate()) | |
#---------------------------------------------------------------------------- | |
# Hermite polynomials | |
# | |
class hermite(OrthogonalPolynomial): | |
r""" | |
``hermite(n, x)`` gives the $n$th Hermite polynomial in $x$, $H_n(x)$. | |
Explanation | |
=========== | |
The Hermite polynomials are orthogonal on $(-\infty, \infty)$ | |
with respect to the weight $\exp\left(-x^2\right)$. | |
Examples | |
======== | |
>>> from sympy import hermite, diff | |
>>> from sympy.abc import x, n | |
>>> hermite(0, x) | |
1 | |
>>> hermite(1, x) | |
2*x | |
>>> hermite(2, x) | |
4*x**2 - 2 | |
>>> hermite(n, x) | |
hermite(n, x) | |
>>> diff(hermite(n,x), x) | |
2*n*hermite(n - 1, x) | |
>>> hermite(n, -x) | |
(-1)**n*hermite(n, x) | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite_prob, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Hermite_polynomial | |
.. [2] https://mathworld.wolfram.com/HermitePolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/HermiteH/ | |
""" | |
_ortho_poly = staticmethod(hermite_poly) | |
def eval(cls, n, x): | |
if not n.is_Number: | |
# Symbolic result H_n(x) | |
# H_n(-x) ---> (-1)**n * H_n(x) | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * hermite(n, -x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2) | |
elif x is S.Infinity: | |
return S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
if n.is_negative: | |
raise ValueError( | |
"The index n must be nonnegative integer (got %r)" % n) | |
else: | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt x | |
n, x = self.args | |
return 2*n*hermite(n - 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = S.NegativeOne**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k) | |
return factorial(n)*Sum(kern, (k, 0, floor(n/2))) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
def _eval_rewrite_as_hermite_prob(self, n, x, **kwargs): | |
return sqrt(2)**n * hermite_prob(n, x*sqrt(2)) | |
class hermite_prob(OrthogonalPolynomial): | |
r""" | |
``hermite_prob(n, x)`` gives the $n$th probabilist's Hermite polynomial | |
in $x$, $He_n(x)$. | |
Explanation | |
=========== | |
The probabilist's Hermite polynomials are orthogonal on $(-\infty, \infty)$ | |
with respect to the weight $\exp\left(-\frac{x^2}{2}\right)$. They are monic | |
polynomials, related to the plain Hermite polynomials (:py:class:`~.hermite`) by | |
.. math :: He_n(x) = 2^{-n/2} H_n(x/\sqrt{2}) | |
Examples | |
======== | |
>>> from sympy import hermite_prob, diff, I | |
>>> from sympy.abc import x, n | |
>>> hermite_prob(1, x) | |
x | |
>>> hermite_prob(5, x) | |
x**5 - 10*x**3 + 15*x | |
>>> diff(hermite_prob(n,x), x) | |
n*hermite_prob(n - 1, x) | |
>>> hermite_prob(n, -x) | |
(-1)**n*hermite_prob(n, x) | |
The sum of absolute values of coefficients of $He_n(x)$ is the number of | |
matchings in the complete graph $K_n$ or telephone number, A000085 in the OEIS: | |
>>> [hermite_prob(n,I) / I**n for n in range(11)] | |
[1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496] | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, | |
laguerre, assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Hermite_polynomial | |
.. [2] https://mathworld.wolfram.com/HermitePolynomial.html | |
""" | |
_ortho_poly = staticmethod(hermite_prob_poly) | |
def eval(cls, n, x): | |
if not n.is_Number: | |
if x.could_extract_minus_sign(): | |
return S.NegativeOne**n * hermite_prob(n, -x) | |
if x.is_zero: | |
return sqrt(S.Pi) / gamma((S.One-n) / 2) | |
elif x is S.Infinity: | |
return S.Infinity | |
else: | |
if n.is_negative: | |
ValueError("n must be a nonnegative integer, not %r" % n) | |
else: | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 2: | |
n, x = self.args | |
return n*hermite_prob(n-1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
k = Dummy("k") | |
kern = (-S.Half)**k * x**(n-2*k) / (factorial(k) * factorial(n-2*k)) | |
return factorial(n)*Sum(kern, (k, 0, floor(n/2))) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
def _eval_rewrite_as_hermite(self, n, x, **kwargs): | |
return sqrt(2)**(-n) * hermite(n, x/sqrt(2)) | |
#---------------------------------------------------------------------------- | |
# Laguerre polynomials | |
# | |
class laguerre(OrthogonalPolynomial): | |
r""" | |
Returns the $n$th Laguerre polynomial in $x$, $L_n(x)$. | |
Examples | |
======== | |
>>> from sympy import laguerre, diff | |
>>> from sympy.abc import x, n | |
>>> laguerre(0, x) | |
1 | |
>>> laguerre(1, x) | |
1 - x | |
>>> laguerre(2, x) | |
x**2/2 - 2*x + 1 | |
>>> laguerre(3, x) | |
-x**3/6 + 3*x**2/2 - 3*x + 1 | |
>>> laguerre(n, x) | |
laguerre(n, x) | |
>>> diff(laguerre(n, x), x) | |
-assoc_laguerre(n - 1, 1, x) | |
Parameters | |
========== | |
n : int | |
Degree of Laguerre polynomial. Must be `n \ge 0`. | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
assoc_laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial | |
.. [2] https://mathworld.wolfram.com/LaguerrePolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/LaguerreL/ | |
.. [4] https://functions.wolfram.com/Polynomials/LaguerreL3/ | |
""" | |
_ortho_poly = staticmethod(laguerre_poly) | |
def eval(cls, n, x): | |
if n.is_integer is False: | |
raise ValueError("Error: n should be an integer.") | |
if not n.is_Number: | |
# Symbolic result L_n(x) | |
# L_{n}(-x) ---> exp(-x) * L_{-n-1}(x) | |
# L_{-n}(x) ---> exp(x) * L_{n-1}(-x) | |
if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): | |
return exp(x)*laguerre(-n - 1, -x) | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return S.One | |
elif x is S.NegativeInfinity: | |
return S.Infinity | |
elif x is S.Infinity: | |
return S.NegativeOne**n * S.Infinity | |
else: | |
if n.is_negative: | |
return exp(x)*laguerre(-n - 1, -x) | |
else: | |
return cls._eval_at_order(n, x) | |
def fdiff(self, argindex=2): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt x | |
n, x = self.args | |
return -assoc_laguerre(n - 1, 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
# Make sure n \in N_0 | |
if n.is_negative: | |
return exp(x) * self._eval_rewrite_as_Sum(-n - 1, -x, **kwargs) | |
if n.is_integer is False: | |
raise ValueError("Error: n should be an integer.") | |
k = Dummy("k") | |
kern = RisingFactorial(-n, k) / factorial(k)**2 * x**k | |
return Sum(kern, (k, 0, n)) | |
def _eval_rewrite_as_polynomial(self, n, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, x, **kwargs) | |
class assoc_laguerre(OrthogonalPolynomial): | |
r""" | |
Returns the $n$th generalized Laguerre polynomial in $x$, $L_n(x)$. | |
Examples | |
======== | |
>>> from sympy import assoc_laguerre, diff | |
>>> from sympy.abc import x, n, a | |
>>> assoc_laguerre(0, a, x) | |
1 | |
>>> assoc_laguerre(1, a, x) | |
a - x + 1 | |
>>> assoc_laguerre(2, a, x) | |
a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 | |
>>> assoc_laguerre(3, a, x) | |
a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + | |
x*(-a**2/2 - 5*a/2 - 3) + 1 | |
>>> assoc_laguerre(n, a, 0) | |
binomial(a + n, a) | |
>>> assoc_laguerre(n, a, x) | |
assoc_laguerre(n, a, x) | |
>>> assoc_laguerre(n, 0, x) | |
laguerre(n, x) | |
>>> diff(assoc_laguerre(n, a, x), x) | |
-assoc_laguerre(n - 1, a + 1, x) | |
>>> diff(assoc_laguerre(n, a, x), a) | |
Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1)) | |
Parameters | |
========== | |
n : int | |
Degree of Laguerre polynomial. Must be `n \ge 0`. | |
alpha : Expr | |
Arbitrary expression. For ``alpha=0`` regular Laguerre | |
polynomials will be generated. | |
See Also | |
======== | |
jacobi, gegenbauer, | |
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, | |
legendre, assoc_legendre, | |
hermite, hermite_prob, | |
laguerre, | |
sympy.polys.orthopolys.jacobi_poly | |
sympy.polys.orthopolys.gegenbauer_poly | |
sympy.polys.orthopolys.chebyshevt_poly | |
sympy.polys.orthopolys.chebyshevu_poly | |
sympy.polys.orthopolys.hermite_poly | |
sympy.polys.orthopolys.hermite_prob_poly | |
sympy.polys.orthopolys.legendre_poly | |
sympy.polys.orthopolys.laguerre_poly | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial#Generalized_Laguerre_polynomials | |
.. [2] https://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | |
.. [3] https://functions.wolfram.com/Polynomials/LaguerreL/ | |
.. [4] https://functions.wolfram.com/Polynomials/LaguerreL3/ | |
""" | |
def eval(cls, n, alpha, x): | |
# L_{n}^{0}(x) ---> L_{n}(x) | |
if alpha.is_zero: | |
return laguerre(n, x) | |
if not n.is_Number: | |
# We can evaluate for some special values of x | |
if x.is_zero: | |
return binomial(n + alpha, alpha) | |
elif x is S.Infinity and n > 0: | |
return S.NegativeOne**n * S.Infinity | |
elif x is S.NegativeInfinity and n > 0: | |
return S.Infinity | |
else: | |
# n is a given fixed integer, evaluate into polynomial | |
if n.is_negative: | |
raise ValueError( | |
"The index n must be nonnegative integer (got %r)" % n) | |
else: | |
return laguerre_poly(n, x, alpha) | |
def fdiff(self, argindex=3): | |
from sympy.concrete.summations import Sum | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt alpha | |
n, alpha, x = self.args | |
k = Dummy("k") | |
return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1)) | |
elif argindex == 3: | |
# Diff wrt x | |
n, alpha, x = self.args | |
return -assoc_laguerre(n - 1, alpha + 1, x) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Sum(self, n, alpha, x, **kwargs): | |
from sympy.concrete.summations import Sum | |
# Make sure n \in N_0 | |
if n.is_negative or n.is_integer is False: | |
raise ValueError("Error: n should be a non-negative integer.") | |
k = Dummy("k") | |
kern = RisingFactorial( | |
-n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k | |
return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n)) | |
def _eval_rewrite_as_polynomial(self, n, alpha, x, **kwargs): | |
# This function is just kept for backwards compatibility | |
# but should not be used | |
return self._eval_rewrite_as_Sum(n, alpha, x, **kwargs) | |
def _eval_conjugate(self): | |
n, alpha, x = self.args | |
return self.func(n, alpha.conjugate(), x.conjugate()) | |