Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
24.1 kB
""" Riemann zeta and related function. """
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.function import ArgumentIndexError, expand_mul, Function
from sympy.core.numbers import pi, I, Integer
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.numbers import bernoulli, factorial, genocchi, harmonic
from sympy.functions.elementary.complexes import re, unpolarify, Abs, polar_lift
from sympy.functions.elementary.exponential import log, exp_polar, exp
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.polytools import Poly
###############################################################################
###################### LERCH TRANSCENDENT #####################################
###############################################################################
class lerchphi(Function):
r"""
Lerch transcendent (Lerch phi function).
Explanation
===========
For $\operatorname{Re}(a) > 0$, $|z| < 1$ and $s \in \mathbb{C}$, the
Lerch transcendent is defined as
.. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s},
where the standard branch of the argument is used for $n + a$,
and by analytic continuation for other values of the parameters.
A commonly used related function is the Lerch zeta function, defined by
.. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a).
**Analytic Continuation and Branching Behavior**
It can be shown that
.. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}.
This provides the analytic continuation to $\operatorname{Re}(a) \le 0$.
Assume now $\operatorname{Re}(a) > 0$. The integral representation
.. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}}
\frac{\mathrm{d}t}{\Gamma(s)}
provides an analytic continuation to $\mathbb{C} - [1, \infty)$.
Finally, for $x \in (1, \infty)$ we find
.. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a)
-\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a)
= \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)},
using the standard branch for both $\log{x}$ and
$\log{\log{x}}$ (a branch of $\log{\log{x}}$ is needed to
evaluate $\log{x}^{s-1}$).
This concludes the analytic continuation. The Lerch transcendent is thus
branched at $z \in \{0, 1, \infty\}$ and
$a \in \mathbb{Z}_{\le 0}$. For fixed $z, a$ outside these
branch points, it is an entire function of $s$.
Examples
========
The Lerch transcendent is a fairly general function, for this reason it does
not automatically evaluate to simpler functions. Use ``expand_func()`` to
achieve this.
If $z=1$, the Lerch transcendent reduces to the Hurwitz zeta function:
>>> from sympy import lerchphi, expand_func
>>> from sympy.abc import z, s, a
>>> expand_func(lerchphi(1, s, a))
zeta(s, a)
More generally, if $z$ is a root of unity, the Lerch transcendent
reduces to a sum of Hurwitz zeta functions:
>>> expand_func(lerchphi(-1, s, a))
zeta(s, a/2)/2**s - zeta(s, a/2 + 1/2)/2**s
If $a=1$, the Lerch transcendent reduces to the polylogarithm:
>>> expand_func(lerchphi(z, s, 1))
polylog(s, z)/z
More generally, if $a$ is rational, the Lerch transcendent reduces
to a sum of polylogarithms:
>>> from sympy import S
>>> expand_func(lerchphi(z, s, S(1)/2))
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))
>>> expand_func(lerchphi(z, s, S(3)/2))
-2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
The derivatives with respect to $z$ and $a$ can be computed in
closed form:
>>> lerchphi(z, s, a).diff(z)
(-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z
>>> lerchphi(z, s, a).diff(a)
-s*lerchphi(z, s + 1, a)
See Also
========
polylog, zeta
References
==========
.. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions,
Vol. I, New York: McGraw-Hill. Section 1.11.
.. [2] https://dlmf.nist.gov/25.14
.. [3] https://en.wikipedia.org/wiki/Lerch_transcendent
"""
def _eval_expand_func(self, **hints):
z, s, a = self.args
if z == 1:
return zeta(s, a)
if s.is_Integer and s <= 0:
t = Dummy('t')
p = Poly((t + a)**(-s), t)
start = 1/(1 - t)
res = S.Zero
for c in reversed(p.all_coeffs()):
res += c*start
start = t*start.diff(t)
return res.subs(t, z)
if a.is_Rational:
# See section 18 of
# Kelly B. Roach. Hypergeometric Function Representations.
# In: Proceedings of the 1997 International Symposium on Symbolic and
# Algebraic Computation, pages 205-211, New York, 1997. ACM.
# TODO should something be polarified here?
add = S.Zero
mul = S.One
# First reduce a to the interaval (0, 1]
if a > 1:
n = floor(a)
if n == a:
n -= 1
a -= n
mul = z**(-n)
add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)])
elif a <= 0:
n = floor(-a) + 1
a += n
mul = z**n
add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)])
m, n = S([a.p, a.q])
zet = exp_polar(2*pi*I/n)
root = z**(1/n)
up_zet = unpolarify(zet)
addargs = []
for k in range(n):
p = polylog(s, zet**k*root)
if isinstance(p, polylog):
p = p._eval_expand_func(**hints)
addargs.append(p/(up_zet**k*root)**m)
return add + mul*n**(s - 1)*Add(*addargs)
# TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed
if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]:
# TODO reference?
if z == -1:
p, q = S([1, 2])
elif z == I:
p, q = S([1, 4])
elif z == -I:
p, q = S([-1, 4])
else:
arg = z.args[0]/(2*pi*I)
p, q = S([arg.p, arg.q])
return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q)
for k in range(q)])
return lerchphi(z, s, a)
def fdiff(self, argindex=1):
z, s, a = self.args
if argindex == 3:
return -s*lerchphi(z, s + 1, a)
elif argindex == 1:
return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z
else:
raise ArgumentIndexError
def _eval_rewrite_helper(self, target):
res = self._eval_expand_func()
if res.has(target):
return res
else:
return self
def _eval_rewrite_as_zeta(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(zeta)
def _eval_rewrite_as_polylog(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(polylog)
###############################################################################
###################### POLYLOGARITHM ##########################################
###############################################################################
class polylog(Function):
r"""
Polylogarithm function.
Explanation
===========
For $|z| < 1$ and $s \in \mathbb{C}$, the polylogarithm is
defined by
.. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s},
where the standard branch of the argument is used for $n$. It admits
an analytic continuation which is branched at $z=1$ (notably not on the
sheet of initial definition), $z=0$ and $z=\infty$.
The name polylogarithm comes from the fact that for $s=1$, the
polylogarithm is related to the ordinary logarithm (see examples), and that
.. math:: \operatorname{Li}_{s+1}(z) =
\int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t.
The polylogarithm is a special case of the Lerch transcendent:
.. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1).
Examples
========
For $z \in \{0, 1, -1\}$, the polylogarithm is automatically expressed
using other functions:
>>> from sympy import polylog
>>> from sympy.abc import s
>>> polylog(s, 0)
0
>>> polylog(s, 1)
zeta(s)
>>> polylog(s, -1)
-dirichlet_eta(s)
If $s$ is a negative integer, $0$ or $1$, the polylogarithm can be
expressed using elementary functions. This can be done using
``expand_func()``:
>>> from sympy import expand_func
>>> from sympy.abc import z
>>> expand_func(polylog(1, z))
-log(1 - z)
>>> expand_func(polylog(0, z))
z/(1 - z)
The derivative with respect to $z$ can be computed in closed form:
>>> polylog(s, z).diff(z)
polylog(s - 1, z)/z
The polylogarithm can be expressed in terms of the lerch transcendent:
>>> from sympy import lerchphi
>>> polylog(s, z).rewrite(lerchphi)
z*lerchphi(z, s, 1)
See Also
========
zeta, lerchphi
"""
@classmethod
def eval(cls, s, z):
if z.is_number:
if z is S.One:
return zeta(s)
elif z is S.NegativeOne:
return -dirichlet_eta(s)
elif z is S.Zero:
return S.Zero
elif s == 2:
dilogtable = _dilogtable()
if z in dilogtable:
return dilogtable[z]
if z.is_zero:
return S.Zero
# Make an effort to determine if z is 1 to avoid replacing into
# expression with singularity
zone = z.equals(S.One)
if zone:
return zeta(s)
elif zone is False:
# For s = 0 or -1 use explicit formulas to evaluate, but
# automatically expanding polylog(1, z) to -log(1-z) seems
# undesirable for summation methods based on hypergeometric
# functions
if s is S.Zero:
return z/(1 - z)
elif s is S.NegativeOne:
return z/(1 - z)**2
if s.is_zero:
return z/(1 - z)
# polylog is branched, but not over the unit disk
if z.has(exp_polar, polar_lift) and (zone or (Abs(z) <= S.One) == True):
return cls(s, unpolarify(z))
def fdiff(self, argindex=1):
s, z = self.args
if argindex == 2:
return polylog(s - 1, z)/z
raise ArgumentIndexError
def _eval_rewrite_as_lerchphi(self, s, z, **kwargs):
return z*lerchphi(z, s, 1)
def _eval_expand_func(self, **hints):
s, z = self.args
if s == 1:
return -log(1 - z)
if s.is_Integer and s <= 0:
u = Dummy('u')
start = u/(1 - u)
for _ in range(-s):
start = u*start.diff(u)
return expand_mul(start).subs(u, z)
return polylog(s, z)
def _eval_is_zero(self):
z = self.args[1]
if z.is_zero:
return True
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.series.order import Order
nu, z = self.args
z0 = z.subs(x, 0)
if z0 is S.NaN:
z0 = z.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if z0.is_zero:
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive:
newn = ceiling(n/exp)
o = Order(x**n, x)
r = z._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
term = r
s = [term]
for k in range(2, newn):
term *= r
s.append(term/k**nu)
return Add(*s) + o
return super(polylog, self)._eval_nseries(x, n, logx, cdir)
###############################################################################
###################### HURWITZ GENERALIZED ZETA FUNCTION ######################
###############################################################################
class zeta(Function):
r"""
Hurwitz zeta function (or Riemann zeta function).
Explanation
===========
For $\operatorname{Re}(a) > 0$ and $\operatorname{Re}(s) > 1$, this
function is defined as
.. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s},
where the standard choice of argument for $n + a$ is used. For fixed
$a$ not a nonpositive integer the Hurwitz zeta function admits a
meromorphic continuation to all of $\mathbb{C}$; it is an unbranched
function with a simple pole at $s = 1$.
The Hurwitz zeta function is a special case of the Lerch transcendent:
.. math:: \zeta(s, a) = \Phi(1, s, a).
This formula defines an analytic continuation for all possible values of
$s$ and $a$ (also $\operatorname{Re}(a) < 0$), see the documentation of
:class:`lerchphi` for a description of the branching behavior.
If no value is passed for $a$ a default value of $a = 1$ is assumed,
yielding the Riemann zeta function.
Examples
========
For $a = 1$ the Hurwitz zeta function reduces to the famous Riemann
zeta function:
.. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.
>>> from sympy import zeta
>>> from sympy.abc import s
>>> zeta(s, 1)
zeta(s)
>>> zeta(s)
zeta(s)
The Riemann zeta function can also be expressed using the Dirichlet eta
function:
>>> from sympy import dirichlet_eta
>>> zeta(s).rewrite(dirichlet_eta)
dirichlet_eta(s)/(1 - 2**(1 - s))
The Riemann zeta function at nonnegative even and negative integer
values is related to the Bernoulli numbers and polynomials:
>>> zeta(2)
pi**2/6
>>> zeta(4)
pi**4/90
>>> zeta(0)
-1/2
>>> zeta(-1)
-1/12
>>> zeta(-4)
0
The specific formulae are:
.. math:: \zeta(2n) = -\frac{(2\pi i)^{2n} B_{2n}}{2(2n)!}
.. math:: \zeta(-n,a) = -\frac{B_{n+1}(a)}{n+1}
No closed-form expressions are known at positive odd integers, but
numerical evaluation is possible:
>>> zeta(3).n()
1.20205690315959
The derivative of $\zeta(s, a)$ with respect to $a$ can be computed:
>>> from sympy.abc import a
>>> zeta(s, a).diff(a)
-s*zeta(s + 1, a)
However the derivative with respect to $s$ has no useful closed form
expression:
>>> zeta(s, a).diff(s)
Derivative(zeta(s, a), s)
The Hurwitz zeta function can be expressed in terms of the Lerch
transcendent, :class:`~.lerchphi`:
>>> from sympy import lerchphi
>>> zeta(s, a).rewrite(lerchphi)
lerchphi(1, s, a)
See Also
========
dirichlet_eta, lerchphi, polylog
References
==========
.. [1] https://dlmf.nist.gov/25.11
.. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function
"""
@classmethod
def eval(cls, s, a=None):
if a is S.One:
return cls(s)
elif s is S.NaN or a is S.NaN:
return S.NaN
elif s is S.One:
return S.ComplexInfinity
elif s is S.Infinity:
return S.One
elif a is S.Infinity:
return S.Zero
sint = s.is_Integer
if a is None:
a = S.One
if sint and s.is_nonpositive:
return bernoulli(1-s, a) / (s-1)
elif a is S.One:
if sint and s.is_even:
return -(2*pi*I)**s * bernoulli(s) / (2*factorial(s))
elif sint and a.is_Integer and a.is_positive:
return cls(s) - harmonic(a-1, s)
elif a.is_Integer and a.is_nonpositive and \
(s.is_integer is False or s.is_nonpositive is False):
return S.NaN
def _eval_rewrite_as_bernoulli(self, s, a=1, **kwargs):
if a == 1 and s.is_integer and s.is_nonnegative and s.is_even:
return -(2*pi*I)**s * bernoulli(s) / (2*factorial(s))
return bernoulli(1-s, a) / (s-1)
def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs):
if a != 1:
return self
s = self.args[0]
return dirichlet_eta(s)/(1 - 2**(1 - s))
def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs):
return lerchphi(1, s, a)
def _eval_is_finite(self):
arg_is_one = (self.args[0] - 1).is_zero
if arg_is_one is not None:
return not arg_is_one
def _eval_expand_func(self, **hints):
s = self.args[0]
a = self.args[1] if len(self.args) > 1 else S.One
if a.is_integer:
if a.is_positive:
return zeta(s) - harmonic(a-1, s)
if a.is_nonpositive and (s.is_integer is False or
s.is_nonpositive is False):
return S.NaN
return self
def fdiff(self, argindex=1):
if len(self.args) == 2:
s, a = self.args
else:
s, a = self.args + (1,)
if argindex == 2:
return -s*zeta(s + 1, a)
else:
raise ArgumentIndexError
def _eval_as_leading_term(self, x, logx=None, cdir=0):
if len(self.args) == 2:
s, a = self.args
else:
s, a = self.args + (S.One,)
try:
c, e = a.leadterm(x)
except NotImplementedError:
return self
if e.is_negative and not s.is_positive:
raise NotImplementedError
return super(zeta, self)._eval_as_leading_term(x, logx, cdir)
class dirichlet_eta(Function):
r"""
Dirichlet eta function.
Explanation
===========
For $\operatorname{Re}(s) > 0$ and $0 < x \le 1$, this function is defined as
.. math:: \eta(s, a) = \sum_{n=0}^\infty \frac{(-1)^n}{(n+a)^s}.
It admits a unique analytic continuation to all of $\mathbb{C}$ for any
fixed $a$ not a nonpositive integer. It is an entire, unbranched function.
It can be expressed using the Hurwitz zeta function as
.. math:: \eta(s, a) = \zeta(s,a) - 2^{1-s} \zeta\left(s, \frac{a+1}{2}\right)
and using the generalized Genocchi function as
.. math:: \eta(s, a) = \frac{G(1-s, a)}{2(s-1)}.
In both cases the limiting value of $\log2 - \psi(a) + \psi\left(\frac{a+1}{2}\right)$
is used when $s = 1$.
Examples
========
>>> from sympy import dirichlet_eta, zeta
>>> from sympy.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1 - s))*zeta(s), True))
See Also
========
zeta
References
==========
.. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function
.. [2] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, s, a=None):
if a is S.One:
return cls(s)
if a is None:
if s == 1:
return log(2)
z = zeta(s)
if not z.has(zeta):
return (1 - 2**(1-s)) * z
return
elif s == 1:
from sympy.functions.special.gamma_functions import digamma
return log(2) - digamma(a) + digamma((a+1)/2)
z1 = zeta(s, a)
z2 = zeta(s, (a+1)/2)
if not z1.has(zeta) and not z2.has(zeta):
return z1 - 2**(1-s) * z2
def _eval_rewrite_as_zeta(self, s, a=1, **kwargs):
from sympy.functions.special.gamma_functions import digamma
if a == 1:
return Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1-s)) * zeta(s), True))
return Piecewise((log(2) - digamma(a) + digamma((a+1)/2), Eq(s, 1)),
(zeta(s, a) - 2**(1-s) * zeta(s, (a+1)/2), True))
def _eval_rewrite_as_genocchi(self, s, a=S.One, **kwargs):
from sympy.functions.special.gamma_functions import digamma
return Piecewise((log(2) - digamma(a) + digamma((a+1)/2), Eq(s, 1)),
(genocchi(1-s, a) / (2 * (s-1)), True))
def _eval_evalf(self, prec):
if all(i.is_number for i in self.args):
return self.rewrite(zeta)._eval_evalf(prec)
class riemann_xi(Function):
r"""
Riemann Xi function.
Examples
========
The Riemann Xi function is closely related to the Riemann zeta function.
The zeros of Riemann Xi function are precisely the non-trivial zeros
of the zeta function.
>>> from sympy import riemann_xi, zeta
>>> from sympy.abc import s
>>> riemann_xi(s).rewrite(zeta)
s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Riemann_Xi_function
"""
@classmethod
def eval(cls, s):
from sympy.functions.special.gamma_functions import gamma
z = zeta(s)
if s in (S.Zero, S.One):
return S.Half
if not isinstance(z, zeta):
return s*(s - 1)*gamma(s/2)*z/(2*pi**(s/2))
def _eval_rewrite_as_zeta(self, s, **kwargs):
from sympy.functions.special.gamma_functions import gamma
return s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2))
class stieltjes(Function):
r"""
Represents Stieltjes constants, $\gamma_{k}$ that occur in
Laurent Series expansion of the Riemann zeta function.
Examples
========
>>> from sympy import stieltjes
>>> from sympy.abc import n, m
>>> stieltjes(n)
stieltjes(n)
The zero'th stieltjes constant:
>>> stieltjes(0)
EulerGamma
>>> stieltjes(0, 1)
EulerGamma
For generalized stieltjes constants:
>>> stieltjes(n, m)
stieltjes(n, m)
Constants are only defined for integers >= 0:
>>> stieltjes(-1)
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Stieltjes_constants
"""
@classmethod
def eval(cls, n, a=None):
if a is not None:
a = sympify(a)
if a is S.NaN:
return S.NaN
if a.is_Integer and a.is_nonpositive:
return S.ComplexInfinity
if n.is_Number:
if n is S.NaN:
return S.NaN
elif n < 0:
return S.ComplexInfinity
elif not n.is_Integer:
return S.ComplexInfinity
elif n is S.Zero and a in [None, 1]:
return S.EulerGamma
if n.is_extended_negative:
return S.ComplexInfinity
if n.is_zero and a in [None, 1]:
return S.EulerGamma
if n.is_integer == False:
return S.ComplexInfinity
@cacheit
def _dilogtable():
return {
S.Half: pi**2/12 - log(2)**2/2,
Integer(2) : pi**2/4 - I*pi*log(2),
-(sqrt(5) - 1)/2 : -pi**2/15 + log((sqrt(5)-1)/2)**2/2,
-(sqrt(5) + 1)/2 : -pi**2/10 - log((sqrt(5)+1)/2)**2,
(3 - sqrt(5))/2 : pi**2/15 - log((sqrt(5)-1)/2)**2,
(sqrt(5) - 1)/2 : pi**2/10 - log((sqrt(5)-1)/2)**2,
I : I*S.Catalan - pi**2/48,
-I : -I*S.Catalan - pi**2/48,
1 - I : pi**2/16 - I*S.Catalan - pi*I/4*log(2),
1 + I : pi**2/16 + I*S.Catalan + pi*I/4*log(2),
(1 - I)/2 : -log(2)**2/8 + pi*I*log(2)/8 + 5*pi**2/96 - I*S.Catalan
}