Spaces:
Sleeping
Sleeping
""" | |
Integrate functions by rewriting them as Meijer G-functions. | |
There are three user-visible functions that can be used by other parts of the | |
sympy library to solve various integration problems: | |
- meijerint_indefinite | |
- meijerint_definite | |
- meijerint_inversion | |
They can be used to compute, respectively, indefinite integrals, definite | |
integrals over intervals of the real line, and inverse laplace-type integrals | |
(from c-I*oo to c+I*oo). See the respective docstrings for details. | |
The main references for this are: | |
[L] Luke, Y. L. (1969), The Special Functions and Their Approximations, | |
Volume 1 | |
[R] Kelly B. Roach. Meijer G Function Representations. | |
In: Proceedings of the 1997 International Symposium on Symbolic and | |
Algebraic Computation, pages 205-211, New York, 1997. ACM. | |
[P] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). | |
Integrals and Series: More Special Functions, Vol. 3,. | |
Gordon and Breach Science Publisher | |
""" | |
from __future__ import annotations | |
import itertools | |
from sympy import SYMPY_DEBUG | |
from sympy.core import S, Expr | |
from sympy.core.add import Add | |
from sympy.core.basic import Basic | |
from sympy.core.cache import cacheit | |
from sympy.core.containers import Tuple | |
from sympy.core.exprtools import factor_terms | |
from sympy.core.function import (expand, expand_mul, expand_power_base, | |
expand_trig, Function) | |
from sympy.core.mul import Mul | |
from sympy.core.intfunc import ilcm | |
from sympy.core.numbers import Rational, pi | |
from sympy.core.relational import Eq, Ne, _canonical_coeff | |
from sympy.core.sorting import default_sort_key, ordered | |
from sympy.core.symbol import Dummy, symbols, Wild, Symbol | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.functions.elementary.complexes import (re, im, arg, Abs, sign, | |
unpolarify, polarify, polar_lift, principal_branch, unbranched_argument, | |
periodic_argument) | |
from sympy.functions.elementary.exponential import exp, exp_polar, log | |
from sympy.functions.elementary.integers import ceiling | |
from sympy.functions.elementary.hyperbolic import (cosh, sinh, | |
_rewrite_hyperbolics_as_exp, HyperbolicFunction) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold | |
from sympy.functions.elementary.trigonometric import (cos, sin, sinc, | |
TrigonometricFunction) | |
from sympy.functions.special.bessel import besselj, bessely, besseli, besselk | |
from sympy.functions.special.delta_functions import DiracDelta, Heaviside | |
from sympy.functions.special.elliptic_integrals import elliptic_k, elliptic_e | |
from sympy.functions.special.error_functions import (erf, erfc, erfi, Ei, | |
expint, Si, Ci, Shi, Chi, fresnels, fresnelc) | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.special.hyper import hyper, meijerg | |
from sympy.functions.special.singularity_functions import SingularityFunction | |
from .integrals import Integral | |
from sympy.logic.boolalg import And, Or, BooleanAtom, Not, BooleanFunction | |
from sympy.polys import cancel, factor | |
from sympy.utilities.iterables import multiset_partitions | |
from sympy.utilities.misc import debug as _debug | |
from sympy.utilities.misc import debugf as _debugf | |
# keep this at top for easy reference | |
z = Dummy('z') | |
def _has(res, *f): | |
# return True if res has f; in the case of Piecewise | |
# only return True if *all* pieces have f | |
res = piecewise_fold(res) | |
if getattr(res, 'is_Piecewise', False): | |
return all(_has(i, *f) for i in res.args) | |
return res.has(*f) | |
def _create_lookup_table(table): | |
""" Add formulae for the function -> meijerg lookup table. """ | |
def wild(n): | |
return Wild(n, exclude=[z]) | |
p, q, a, b, c = list(map(wild, 'pqabc')) | |
n = Wild('n', properties=[lambda x: x.is_Integer and x > 0]) | |
t = p*z**q | |
def add(formula, an, ap, bm, bq, arg=t, fac=S.One, cond=True, hint=True): | |
table.setdefault(_mytype(formula, z), []).append((formula, | |
[(fac, meijerg(an, ap, bm, bq, arg))], cond, hint)) | |
def addi(formula, inst, cond, hint=True): | |
table.setdefault( | |
_mytype(formula, z), []).append((formula, inst, cond, hint)) | |
def constant(a): | |
return [(a, meijerg([1], [], [], [0], z)), | |
(a, meijerg([], [1], [0], [], z))] | |
table[()] = [(a, constant(a), True, True)] | |
# [P], Section 8. | |
class IsNonPositiveInteger(Function): | |
def eval(cls, arg): | |
arg = unpolarify(arg) | |
if arg.is_Integer is True: | |
return arg <= 0 | |
# Section 8.4.2 | |
# TODO this needs more polar_lift (c/f entry for exp) | |
add(Heaviside(t - b)*(t - b)**(a - 1), [a], [], [], [0], t/b, | |
gamma(a)*b**(a - 1), And(b > 0)) | |
add(Heaviside(b - t)*(b - t)**(a - 1), [], [a], [0], [], t/b, | |
gamma(a)*b**(a - 1), And(b > 0)) | |
add(Heaviside(z - (b/p)**(1/q))*(t - b)**(a - 1), [a], [], [], [0], t/b, | |
gamma(a)*b**(a - 1), And(b > 0)) | |
add(Heaviside((b/p)**(1/q) - z)*(b - t)**(a - 1), [], [a], [0], [], t/b, | |
gamma(a)*b**(a - 1), And(b > 0)) | |
add((b + t)**(-a), [1 - a], [], [0], [], t/b, b**(-a)/gamma(a), | |
hint=Not(IsNonPositiveInteger(a))) | |
add(Abs(b - t)**(-a), [1 - a], [(1 - a)/2], [0], [(1 - a)/2], t/b, | |
2*sin(pi*a/2)*gamma(1 - a)*Abs(b)**(-a), re(a) < 1) | |
add((t**a - b**a)/(t - b), [0, a], [], [0, a], [], t/b, | |
b**(a - 1)*sin(a*pi)/pi) | |
# 12 | |
def A1(r, sign, nu): | |
return pi**Rational(-1, 2)*(-sign*nu/2)**(1 - 2*r) | |
def tmpadd(r, sgn): | |
# XXX the a**2 is bad for matching | |
add((sqrt(a**2 + t) + sgn*a)**b/(a**2 + t)**r, | |
[(1 + b)/2, 1 - 2*r + b/2], [], | |
[(b - sgn*b)/2], [(b + sgn*b)/2], t/a**2, | |
a**(b - 2*r)*A1(r, sgn, b)) | |
tmpadd(0, 1) | |
tmpadd(0, -1) | |
tmpadd(S.Half, 1) | |
tmpadd(S.Half, -1) | |
# 13 | |
def tmpadd(r, sgn): | |
add((sqrt(a + p*z**q) + sgn*sqrt(p)*z**(q/2))**b/(a + p*z**q)**r, | |
[1 - r + sgn*b/2], [1 - r - sgn*b/2], [0, S.Half], [], | |
p*z**q/a, a**(b/2 - r)*A1(r, sgn, b)) | |
tmpadd(0, 1) | |
tmpadd(0, -1) | |
tmpadd(S.Half, 1) | |
tmpadd(S.Half, -1) | |
# (those after look obscure) | |
# Section 8.4.3 | |
add(exp(polar_lift(-1)*t), [], [], [0], []) | |
# TODO can do sin^n, sinh^n by expansion ... where? | |
# 8.4.4 (hyperbolic functions) | |
add(sinh(t), [], [1], [S.Half], [1, 0], t**2/4, pi**Rational(3, 2)) | |
add(cosh(t), [], [S.Half], [0], [S.Half, S.Half], t**2/4, pi**Rational(3, 2)) | |
# Section 8.4.5 | |
# TODO can do t + a. but can also do by expansion... (XXX not really) | |
add(sin(t), [], [], [S.Half], [0], t**2/4, sqrt(pi)) | |
add(cos(t), [], [], [0], [S.Half], t**2/4, sqrt(pi)) | |
# Section 8.4.6 (sinc function) | |
add(sinc(t), [], [], [0], [Rational(-1, 2)], t**2/4, sqrt(pi)/2) | |
# Section 8.5.5 | |
def make_log1(subs): | |
N = subs[n] | |
return [(S.NegativeOne**N*factorial(N), | |
meijerg([], [1]*(N + 1), [0]*(N + 1), [], t))] | |
def make_log2(subs): | |
N = subs[n] | |
return [(factorial(N), | |
meijerg([1]*(N + 1), [], [], [0]*(N + 1), t))] | |
# TODO these only hold for positive p, and can be made more general | |
# but who uses log(x)*Heaviside(a-x) anyway ... | |
# TODO also it would be nice to derive them recursively ... | |
addi(log(t)**n*Heaviside(1 - t), make_log1, True) | |
addi(log(t)**n*Heaviside(t - 1), make_log2, True) | |
def make_log3(subs): | |
return make_log1(subs) + make_log2(subs) | |
addi(log(t)**n, make_log3, True) | |
addi(log(t + a), | |
constant(log(a)) + [(S.One, meijerg([1, 1], [], [1], [0], t/a))], | |
True) | |
addi(log(Abs(t - a)), constant(log(Abs(a))) + | |
[(pi, meijerg([1, 1], [S.Half], [1], [0, S.Half], t/a))], | |
True) | |
# TODO log(x)/(x+a) and log(x)/(x-1) can also be done. should they | |
# be derivable? | |
# TODO further formulae in this section seem obscure | |
# Sections 8.4.9-10 | |
# TODO | |
# Section 8.4.11 | |
addi(Ei(t), | |
constant(-S.ImaginaryUnit*pi) + [(S.NegativeOne, meijerg([], [1], [0, 0], [], | |
t*polar_lift(-1)))], | |
True) | |
# Section 8.4.12 | |
add(Si(t), [1], [], [S.Half], [0, 0], t**2/4, sqrt(pi)/2) | |
add(Ci(t), [], [1], [0, 0], [S.Half], t**2/4, -sqrt(pi)/2) | |
# Section 8.4.13 | |
add(Shi(t), [S.Half], [], [0], [Rational(-1, 2), Rational(-1, 2)], polar_lift(-1)*t**2/4, | |
t*sqrt(pi)/4) | |
add(Chi(t), [], [S.Half, 1], [0, 0], [S.Half, S.Half], t**2/4, - | |
pi**S('3/2')/2) | |
# generalized exponential integral | |
add(expint(a, t), [], [a], [a - 1, 0], [], t) | |
# Section 8.4.14 | |
add(erf(t), [1], [], [S.Half], [0], t**2, 1/sqrt(pi)) | |
# TODO exp(-x)*erf(I*x) does not work | |
add(erfc(t), [], [1], [0, S.Half], [], t**2, 1/sqrt(pi)) | |
# This formula for erfi(z) yields a wrong(?) minus sign | |
#add(erfi(t), [1], [], [S.Half], [0], -t**2, I/sqrt(pi)) | |
add(erfi(t), [S.Half], [], [0], [Rational(-1, 2)], -t**2, t/sqrt(pi)) | |
# Fresnel Integrals | |
add(fresnels(t), [1], [], [Rational(3, 4)], [0, Rational(1, 4)], pi**2*t**4/16, S.Half) | |
add(fresnelc(t), [1], [], [Rational(1, 4)], [0, Rational(3, 4)], pi**2*t**4/16, S.Half) | |
##### bessel-type functions ##### | |
# Section 8.4.19 | |
add(besselj(a, t), [], [], [a/2], [-a/2], t**2/4) | |
# all of the following are derivable | |
#add(sin(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [(1+a)/2], | |
# [-a/2, a/2, (1-a)/2], t**2, 1/sqrt(2)) | |
#add(cos(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [a/2], | |
# [-a/2, (1+a)/2, (1-a)/2], t**2, 1/sqrt(2)) | |
#add(besselj(a, t)**2, [S.Half], [], [a], [-a, 0], t**2, 1/sqrt(pi)) | |
#add(besselj(a, t)*besselj(b, t), [0, S.Half], [], [(a + b)/2], | |
# [-(a+b)/2, (a - b)/2, (b - a)/2], t**2, 1/sqrt(pi)) | |
# Section 8.4.20 | |
add(bessely(a, t), [], [-(a + 1)/2], [a/2, -a/2], [-(a + 1)/2], t**2/4) | |
# TODO all of the following should be derivable | |
#add(sin(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(1 - a - 1)/2], | |
# [(1 + a)/2, (1 - a)/2], [(1 - a - 1)/2, (1 - 1 - a)/2, (1 - 1 + a)/2], | |
# t**2, 1/sqrt(2)) | |
#add(cos(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(0 - a - 1)/2], | |
# [(0 + a)/2, (0 - a)/2], [(0 - a - 1)/2, (1 - 0 - a)/2, (1 - 0 + a)/2], | |
# t**2, 1/sqrt(2)) | |
#add(besselj(a, t)*bessely(b, t), [0, S.Half], [(a - b - 1)/2], | |
# [(a + b)/2, (a - b)/2], [(a - b - 1)/2, -(a + b)/2, (b - a)/2], | |
# t**2, 1/sqrt(pi)) | |
#addi(bessely(a, t)**2, | |
# [(2/sqrt(pi), meijerg([], [S.Half, S.Half - a], [0, a, -a], | |
# [S.Half - a], t**2)), | |
# (1/sqrt(pi), meijerg([S.Half], [], [a], [-a, 0], t**2))], | |
# True) | |
#addi(bessely(a, t)*bessely(b, t), | |
# [(2/sqrt(pi), meijerg([], [0, S.Half, (1 - a - b)/2], | |
# [(a + b)/2, (a - b)/2, (b - a)/2, -(a + b)/2], | |
# [(1 - a - b)/2], t**2)), | |
# (1/sqrt(pi), meijerg([0, S.Half], [], [(a + b)/2], | |
# [-(a + b)/2, (a - b)/2, (b - a)/2], t**2))], | |
# True) | |
# Section 8.4.21 ? | |
# Section 8.4.22 | |
add(besseli(a, t), [], [(1 + a)/2], [a/2], [-a/2, (1 + a)/2], t**2/4, pi) | |
# TODO many more formulas. should all be derivable | |
# Section 8.4.23 | |
add(besselk(a, t), [], [], [a/2, -a/2], [], t**2/4, S.Half) | |
# TODO many more formulas. should all be derivable | |
# Complete elliptic integrals K(z) and E(z) | |
add(elliptic_k(t), [S.Half, S.Half], [], [0], [0], -t, S.Half) | |
add(elliptic_e(t), [S.Half, 3*S.Half], [], [0], [0], -t, Rational(-1, 2)/2) | |
#################################################################### | |
# First some helper functions. | |
#################################################################### | |
from sympy.utilities.timeutils import timethis | |
timeit = timethis('meijerg') | |
def _mytype(f: Basic, x: Symbol) -> tuple[type[Basic], ...]: | |
""" Create a hashable entity describing the type of f. """ | |
def key(x: type[Basic]) -> tuple[int, int, str]: | |
return x.class_key() | |
if x not in f.free_symbols: | |
return () | |
elif f.is_Function: | |
return type(f), | |
return tuple(sorted((t for a in f.args for t in _mytype(a, x)), key=key)) | |
class _CoeffExpValueError(ValueError): | |
""" | |
Exception raised by _get_coeff_exp, for internal use only. | |
""" | |
pass | |
def _get_coeff_exp(expr, x): | |
""" | |
When expr is known to be of the form c*x**b, with c and/or b possibly 1, | |
return c, b. | |
Examples | |
======== | |
>>> from sympy.abc import x, a, b | |
>>> from sympy.integrals.meijerint import _get_coeff_exp | |
>>> _get_coeff_exp(a*x**b, x) | |
(a, b) | |
>>> _get_coeff_exp(x, x) | |
(1, 1) | |
>>> _get_coeff_exp(2*x, x) | |
(2, 1) | |
>>> _get_coeff_exp(x**3, x) | |
(1, 3) | |
""" | |
from sympy.simplify import powsimp | |
(c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x) | |
if not m: | |
return c, S.Zero | |
[m] = m | |
if m.is_Pow: | |
if m.base != x: | |
raise _CoeffExpValueError('expr not of form a*x**b') | |
return c, m.exp | |
elif m == x: | |
return c, S.One | |
else: | |
raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr) | |
def _exponents(expr, x): | |
""" | |
Find the exponents of ``x`` (not including zero) in ``expr``. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _exponents | |
>>> from sympy.abc import x, y | |
>>> from sympy import sin | |
>>> _exponents(x, x) | |
{1} | |
>>> _exponents(x**2, x) | |
{2} | |
>>> _exponents(x**2 + x, x) | |
{1, 2} | |
>>> _exponents(x**3*sin(x + x**y) + 1/x, x) | |
{-1, 1, 3, y} | |
""" | |
def _exponents_(expr, x, res): | |
if expr == x: | |
res.update([1]) | |
return | |
if expr.is_Pow and expr.base == x: | |
res.update([expr.exp]) | |
return | |
for argument in expr.args: | |
_exponents_(argument, x, res) | |
res = set() | |
_exponents_(expr, x, res) | |
return res | |
def _functions(expr, x): | |
""" Find the types of functions in expr, to estimate the complexity. """ | |
return {e.func for e in expr.atoms(Function) if x in e.free_symbols} | |
def _find_splitting_points(expr, x): | |
""" | |
Find numbers a such that a linear substitution x -> x + a would | |
(hopefully) simplify expr. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _find_splitting_points as fsp | |
>>> from sympy import sin | |
>>> from sympy.abc import x | |
>>> fsp(x, x) | |
{0} | |
>>> fsp((x-1)**3, x) | |
{1} | |
>>> fsp(sin(x+3)*x, x) | |
{-3, 0} | |
""" | |
p, q = [Wild(n, exclude=[x]) for n in 'pq'] | |
def compute_innermost(expr, res): | |
if not isinstance(expr, Expr): | |
return | |
m = expr.match(p*x + q) | |
if m and m[p] != 0: | |
res.add(-m[q]/m[p]) | |
return | |
if expr.is_Atom: | |
return | |
for argument in expr.args: | |
compute_innermost(argument, res) | |
innermost = set() | |
compute_innermost(expr, innermost) | |
return innermost | |
def _split_mul(f, x): | |
""" | |
Split expression ``f`` into fac, po, g, where fac is a constant factor, | |
po = x**s for some s independent of s, and g is "the rest". | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _split_mul | |
>>> from sympy import sin | |
>>> from sympy.abc import s, x | |
>>> _split_mul((3*x)**s*sin(x**2)*x, x) | |
(3**s, x*x**s, sin(x**2)) | |
""" | |
fac = S.One | |
po = S.One | |
g = S.One | |
f = expand_power_base(f) | |
args = Mul.make_args(f) | |
for a in args: | |
if a == x: | |
po *= x | |
elif x not in a.free_symbols: | |
fac *= a | |
else: | |
if a.is_Pow and x not in a.exp.free_symbols: | |
c, t = a.base.as_coeff_mul(x) | |
if t != (x,): | |
c, t = expand_mul(a.base).as_coeff_mul(x) | |
if t == (x,): | |
po *= x**a.exp | |
fac *= unpolarify(polarify(c**a.exp, subs=False)) | |
continue | |
g *= a | |
return fac, po, g | |
def _mul_args(f): | |
""" | |
Return a list ``L`` such that ``Mul(*L) == f``. | |
If ``f`` is not a ``Mul`` or ``Pow``, ``L=[f]``. | |
If ``f=g**n`` for an integer ``n``, ``L=[g]*n``. | |
If ``f`` is a ``Mul``, ``L`` comes from applying ``_mul_args`` to all factors of ``f``. | |
""" | |
args = Mul.make_args(f) | |
gs = [] | |
for g in args: | |
if g.is_Pow and g.exp.is_Integer: | |
n = g.exp | |
base = g.base | |
if n < 0: | |
n = -n | |
base = 1/base | |
gs += [base]*n | |
else: | |
gs.append(g) | |
return gs | |
def _mul_as_two_parts(f): | |
""" | |
Find all the ways to split ``f`` into a product of two terms. | |
Return None on failure. | |
Explanation | |
=========== | |
Although the order is canonical from multiset_partitions, this is | |
not necessarily the best order to process the terms. For example, | |
if the case of len(gs) == 2 is removed and multiset is allowed to | |
sort the terms, some tests fail. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _mul_as_two_parts | |
>>> from sympy import sin, exp, ordered | |
>>> from sympy.abc import x | |
>>> list(ordered(_mul_as_two_parts(x*sin(x)*exp(x)))) | |
[(x, exp(x)*sin(x)), (x*exp(x), sin(x)), (x*sin(x), exp(x))] | |
""" | |
gs = _mul_args(f) | |
if len(gs) < 2: | |
return None | |
if len(gs) == 2: | |
return [tuple(gs)] | |
return [(Mul(*x), Mul(*y)) for (x, y) in multiset_partitions(gs, 2)] | |
def _inflate_g(g, n): | |
""" Return C, h such that h is a G function of argument z**n and | |
g = C*h. """ | |
# TODO should this be a method of meijerg? | |
# See: [L, page 150, equation (5)] | |
def inflate(params, n): | |
""" (a1, .., ak) -> (a1/n, (a1+1)/n, ..., (ak + n-1)/n) """ | |
return [(a + i)/n for a, i in itertools.product(params, range(n))] | |
v = S(len(g.ap) - len(g.bq)) | |
C = n**(1 + g.nu + v/2) | |
C /= (2*pi)**((n - 1)*g.delta) | |
return C, meijerg(inflate(g.an, n), inflate(g.aother, n), | |
inflate(g.bm, n), inflate(g.bother, n), | |
g.argument**n * n**(n*v)) | |
def _flip_g(g): | |
""" Turn the G function into one of inverse argument | |
(i.e. G(1/x) -> G'(x)) """ | |
# See [L], section 5.2 | |
def tr(l): | |
return [1 - a for a in l] | |
return meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), 1/g.argument) | |
def _inflate_fox_h(g, a): | |
r""" | |
Let d denote the integrand in the definition of the G function ``g``. | |
Consider the function H which is defined in the same way, but with | |
integrand d/Gamma(a*s) (contour conventions as usual). | |
If ``a`` is rational, the function H can be written as C*G, for a constant C | |
and a G-function G. | |
This function returns C, G. | |
""" | |
if a < 0: | |
return _inflate_fox_h(_flip_g(g), -a) | |
p = S(a.p) | |
q = S(a.q) | |
# We use the substitution s->qs, i.e. inflate g by q. We are left with an | |
# extra factor of Gamma(p*s), for which we use Gauss' multiplication | |
# theorem. | |
D, g = _inflate_g(g, q) | |
z = g.argument | |
D /= (2*pi)**((1 - p)/2)*p**Rational(-1, 2) | |
z /= p**p | |
bs = [(n + 1)/p for n in range(p)] | |
return D, meijerg(g.an, g.aother, g.bm, list(g.bother) + bs, z) | |
_dummies: dict[tuple[str, str], Dummy] = {} | |
def _dummy(name, token, expr, **kwargs): | |
""" | |
Return a dummy. This will return the same dummy if the same token+name is | |
requested more than once, and it is not already in expr. | |
This is for being cache-friendly. | |
""" | |
d = _dummy_(name, token, **kwargs) | |
if d in expr.free_symbols: | |
return Dummy(name, **kwargs) | |
return d | |
def _dummy_(name, token, **kwargs): | |
""" | |
Return a dummy associated to name and token. Same effect as declaring | |
it globally. | |
""" | |
global _dummies | |
if not (name, token) in _dummies: | |
_dummies[(name, token)] = Dummy(name, **kwargs) | |
return _dummies[(name, token)] | |
def _is_analytic(f, x): | |
""" Check if f(x), when expressed using G functions on the positive reals, | |
will in fact agree with the G functions almost everywhere """ | |
return not any(x in expr.free_symbols for expr in f.atoms(Heaviside, Abs)) | |
def _condsimp(cond, first=True): | |
""" | |
Do naive simplifications on ``cond``. | |
Explanation | |
=========== | |
Note that this routine is completely ad-hoc, simplification rules being | |
added as need arises rather than following any logical pattern. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _condsimp as simp | |
>>> from sympy import Or, Eq | |
>>> from sympy.abc import x, y | |
>>> simp(Or(x < y, Eq(x, y))) | |
x <= y | |
""" | |
if first: | |
cond = cond.replace(lambda _: _.is_Relational, _canonical_coeff) | |
first = False | |
if not isinstance(cond, BooleanFunction): | |
return cond | |
p, q, r = symbols('p q r', cls=Wild) | |
# transforms tests use 0, 4, 5 and 11-14 | |
# meijer tests use 0, 2, 11, 14 | |
# joint_rv uses 6, 7 | |
rules = [ | |
(Or(p < q, Eq(p, q)), p <= q), # 0 | |
# The next two obviously are instances of a general pattern, but it is | |
# easier to spell out the few cases we care about. | |
(And(Abs(arg(p)) <= pi, Abs(arg(p) - 2*pi) <= pi), | |
Eq(arg(p) - pi, 0)), # 1 | |
(And(Abs(2*arg(p) + pi) <= pi, Abs(2*arg(p) - pi) <= pi), | |
Eq(arg(p), 0)), # 2 | |
(And(Abs(2*arg(p) + pi) < pi, Abs(2*arg(p) - pi) <= pi), | |
S.false), # 3 | |
(And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) <= pi/2), | |
Eq(arg(p), 0)), # 4 | |
(And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) < pi/2), | |
S.false), # 5 | |
(And(Abs(arg(p**2/2 + 1)) < pi, Ne(Abs(arg(p**2/2 + 1)), pi)), | |
S.true), # 6 | |
(Or(Abs(arg(p**2/2 + 1)) < pi, Ne(1/(p**2/2 + 1), 0)), | |
S.true), # 7 | |
(And(Abs(unbranched_argument(p)) <= pi, | |
Abs(unbranched_argument(exp_polar(-2*pi*S.ImaginaryUnit)*p)) <= pi), | |
Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi)*p), 0)), # 8 | |
(And(Abs(unbranched_argument(p)) <= pi/2, | |
Abs(unbranched_argument(exp_polar(-pi*S.ImaginaryUnit)*p)) <= pi/2), | |
Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi/2)*p), 0)), # 9 | |
(Or(p <= q, And(p < q, r)), p <= q), # 10 | |
(Ne(p**2, 1) & (p**2 > 1), p**2 > 1), # 11 | |
(Ne(1/p, 1) & (cos(Abs(arg(p)))*Abs(p) > 1), Abs(p) > 1), # 12 | |
(Ne(p, 2) & (cos(Abs(arg(p)))*Abs(p) > 2), Abs(p) > 2), # 13 | |
((Abs(arg(p)) < pi/2) & (cos(Abs(arg(p)))*sqrt(Abs(p**2)) > 1), p**2 > 1), # 14 | |
] | |
cond = cond.func(*[_condsimp(_, first) for _ in cond.args]) | |
change = True | |
while change: | |
change = False | |
for irule, (fro, to) in enumerate(rules): | |
if fro.func != cond.func: | |
continue | |
for n, arg1 in enumerate(cond.args): | |
if r in fro.args[0].free_symbols: | |
m = arg1.match(fro.args[1]) | |
num = 1 | |
else: | |
num = 0 | |
m = arg1.match(fro.args[0]) | |
if not m: | |
continue | |
otherargs = [x.subs(m) for x in fro.args[:num] + fro.args[num + 1:]] | |
otherlist = [n] | |
for arg2 in otherargs: | |
for k, arg3 in enumerate(cond.args): | |
if k in otherlist: | |
continue | |
if arg2 == arg3: | |
otherlist += [k] | |
break | |
if isinstance(arg3, And) and arg2.args[1] == r and \ | |
isinstance(arg2, And) and arg2.args[0] in arg3.args: | |
otherlist += [k] | |
break | |
if isinstance(arg3, And) and arg2.args[0] == r and \ | |
isinstance(arg2, And) and arg2.args[1] in arg3.args: | |
otherlist += [k] | |
break | |
if len(otherlist) != len(otherargs) + 1: | |
continue | |
newargs = [arg_ for (k, arg_) in enumerate(cond.args) | |
if k not in otherlist] + [to.subs(m)] | |
if SYMPY_DEBUG: | |
if irule not in (0, 2, 4, 5, 6, 7, 11, 12, 13, 14): | |
print('used new rule:', irule) | |
cond = cond.func(*newargs) | |
change = True | |
break | |
# final tweak | |
def rel_touchup(rel): | |
if rel.rel_op != '==' or rel.rhs != 0: | |
return rel | |
# handle Eq(*, 0) | |
LHS = rel.lhs | |
m = LHS.match(arg(p)**q) | |
if not m: | |
m = LHS.match(unbranched_argument(polar_lift(p)**q)) | |
if not m: | |
if isinstance(LHS, periodic_argument) and not LHS.args[0].is_polar \ | |
and LHS.args[1] is S.Infinity: | |
return (LHS.args[0] > 0) | |
return rel | |
return (m[p] > 0) | |
cond = cond.replace(lambda _: _.is_Relational, rel_touchup) | |
if SYMPY_DEBUG: | |
print('_condsimp: ', cond) | |
return cond | |
def _eval_cond(cond): | |
""" Re-evaluate the conditions. """ | |
if isinstance(cond, bool): | |
return cond | |
return _condsimp(cond.doit()) | |
#################################################################### | |
# Now the "backbone" functions to do actual integration. | |
#################################################################### | |
def _my_principal_branch(expr, period, full_pb=False): | |
""" Bring expr nearer to its principal branch by removing superfluous | |
factors. | |
This function does *not* guarantee to yield the principal branch, | |
to avoid introducing opaque principal_branch() objects, | |
unless full_pb=True. """ | |
res = principal_branch(expr, period) | |
if not full_pb: | |
res = res.replace(principal_branch, lambda x, y: x) | |
return res | |
def _rewrite_saxena_1(fac, po, g, x): | |
""" | |
Rewrite the integral fac*po*g dx, from zero to infinity, as | |
integral fac*G, where G has argument a*x. Note po=x**s. | |
Return fac, G. | |
""" | |
_, s = _get_coeff_exp(po, x) | |
a, b = _get_coeff_exp(g.argument, x) | |
period = g.get_period() | |
a = _my_principal_branch(a, period) | |
# We substitute t = x**b. | |
C = fac/(Abs(b)*a**((s + 1)/b - 1)) | |
# Absorb a factor of (at)**((1 + s)/b - 1). | |
def tr(l): | |
return [a + (1 + s)/b - 1 for a in l] | |
return C, meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), | |
a*x) | |
def _check_antecedents_1(g, x, helper=False): | |
r""" | |
Return a condition under which the mellin transform of g exists. | |
Any power of x has already been absorbed into the G function, | |
so this is just $\int_0^\infty g\, dx$. | |
See [L, section 5.6.1]. (Note that s=1.) | |
If ``helper`` is True, only check if the MT exists at infinity, i.e. if | |
$\int_1^\infty g\, dx$ exists. | |
""" | |
# NOTE if you update these conditions, please update the documentation as well | |
delta = g.delta | |
eta, _ = _get_coeff_exp(g.argument, x) | |
m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) | |
if p > q: | |
def tr(l): | |
return [1 - x for x in l] | |
return _check_antecedents_1(meijerg(tr(g.bm), tr(g.bother), | |
tr(g.an), tr(g.aother), x/eta), | |
x) | |
tmp = [-re(b) < 1 for b in g.bm] + [1 < 1 - re(a) for a in g.an] | |
cond_3 = And(*tmp) | |
tmp += [-re(b) < 1 for b in g.bother] | |
tmp += [1 < 1 - re(a) for a in g.aother] | |
cond_3_star = And(*tmp) | |
cond_4 = (-re(g.nu) + (q + 1 - p)/2 > q - p) | |
def debug(*msg): | |
_debug(*msg) | |
def debugf(string, arg): | |
_debugf(string, arg) | |
debug('Checking antecedents for 1 function:') | |
debugf(' delta=%s, eta=%s, m=%s, n=%s, p=%s, q=%s', | |
(delta, eta, m, n, p, q)) | |
debugf(' ap = %s, %s', (list(g.an), list(g.aother))) | |
debugf(' bq = %s, %s', (list(g.bm), list(g.bother))) | |
debugf(' cond_3=%s, cond_3*=%s, cond_4=%s', (cond_3, cond_3_star, cond_4)) | |
conds = [] | |
# case 1 | |
case1 = [] | |
tmp1 = [1 <= n, p < q, 1 <= m] | |
tmp2 = [1 <= p, 1 <= m, Eq(q, p + 1), Not(And(Eq(n, 0), Eq(m, p + 1)))] | |
tmp3 = [1 <= p, Eq(q, p)] | |
for k in range(ceiling(delta/2) + 1): | |
tmp3 += [Ne(Abs(unbranched_argument(eta)), (delta - 2*k)*pi)] | |
tmp = [delta > 0, Abs(unbranched_argument(eta)) < delta*pi] | |
extra = [Ne(eta, 0), cond_3] | |
if helper: | |
extra = [] | |
for t in [tmp1, tmp2, tmp3]: | |
case1 += [And(*(t + tmp + extra))] | |
conds += case1 | |
debug(' case 1:', case1) | |
# case 2 | |
extra = [cond_3] | |
if helper: | |
extra = [] | |
case2 = [And(Eq(n, 0), p + 1 <= m, m <= q, | |
Abs(unbranched_argument(eta)) < delta*pi, *extra)] | |
conds += case2 | |
debug(' case 2:', case2) | |
# case 3 | |
extra = [cond_3, cond_4] | |
if helper: | |
extra = [] | |
case3 = [And(p < q, 1 <= m, delta > 0, Eq(Abs(unbranched_argument(eta)), delta*pi), | |
*extra)] | |
case3 += [And(p <= q - 2, Eq(delta, 0), Eq(Abs(unbranched_argument(eta)), 0), *extra)] | |
conds += case3 | |
debug(' case 3:', case3) | |
# TODO altered cases 4-7 | |
# extra case from wofram functions site: | |
# (reproduced verbatim from Prudnikov, section 2.24.2) | |
# https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/01/ | |
case_extra = [] | |
case_extra += [Eq(p, q), Eq(delta, 0), Eq(unbranched_argument(eta), 0), Ne(eta, 0)] | |
if not helper: | |
case_extra += [cond_3] | |
s = [] | |
for a, b in zip(g.ap, g.bq): | |
s += [b - a] | |
case_extra += [re(Add(*s)) < 0] | |
case_extra = And(*case_extra) | |
conds += [case_extra] | |
debug(' extra case:', [case_extra]) | |
case_extra_2 = [And(delta > 0, Abs(unbranched_argument(eta)) < delta*pi)] | |
if not helper: | |
case_extra_2 += [cond_3] | |
case_extra_2 = And(*case_extra_2) | |
conds += [case_extra_2] | |
debug(' second extra case:', [case_extra_2]) | |
# TODO This leaves only one case from the three listed by Prudnikov. | |
# Investigate if these indeed cover everything; if so, remove the rest. | |
return Or(*conds) | |
def _int0oo_1(g, x): | |
r""" | |
Evaluate $\int_0^\infty g\, dx$ using G functions, | |
assuming the necessary conditions are fulfilled. | |
Examples | |
======== | |
>>> from sympy.abc import a, b, c, d, x, y | |
>>> from sympy import meijerg | |
>>> from sympy.integrals.meijerint import _int0oo_1 | |
>>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x) | |
gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1)) | |
""" | |
from sympy.simplify import gammasimp | |
# See [L, section 5.6.1]. Note that s=1. | |
eta, _ = _get_coeff_exp(g.argument, x) | |
res = 1/eta | |
# XXX TODO we should reduce order first | |
for b in g.bm: | |
res *= gamma(b + 1) | |
for a in g.an: | |
res *= gamma(1 - a - 1) | |
for b in g.bother: | |
res /= gamma(1 - b - 1) | |
for a in g.aother: | |
res /= gamma(a + 1) | |
return gammasimp(unpolarify(res)) | |
def _rewrite_saxena(fac, po, g1, g2, x, full_pb=False): | |
""" | |
Rewrite the integral ``fac*po*g1*g2`` from 0 to oo in terms of G | |
functions with argument ``c*x``. | |
Explanation | |
=========== | |
Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals | |
integral fac ``po``, ``g1``, ``g2`` from 0 to infinity. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _rewrite_saxena | |
>>> from sympy.abc import s, t, m | |
>>> from sympy import meijerg | |
>>> g1 = meijerg([], [], [0], [], s*t) | |
>>> g2 = meijerg([], [], [m/2], [-m/2], t**2/4) | |
>>> r = _rewrite_saxena(1, t**0, g1, g2, t) | |
>>> r[0] | |
s/(4*sqrt(pi)) | |
>>> r[1] | |
meijerg(((), ()), ((-1/2, 0), ()), s**2*t/4) | |
>>> r[2] | |
meijerg(((), ()), ((m/2,), (-m/2,)), t/4) | |
""" | |
def pb(g): | |
a, b = _get_coeff_exp(g.argument, x) | |
per = g.get_period() | |
return meijerg(g.an, g.aother, g.bm, g.bother, | |
_my_principal_branch(a, per, full_pb)*x**b) | |
_, s = _get_coeff_exp(po, x) | |
_, b1 = _get_coeff_exp(g1.argument, x) | |
_, b2 = _get_coeff_exp(g2.argument, x) | |
if (b1 < 0) == True: | |
b1 = -b1 | |
g1 = _flip_g(g1) | |
if (b2 < 0) == True: | |
b2 = -b2 | |
g2 = _flip_g(g2) | |
if not b1.is_Rational or not b2.is_Rational: | |
return | |
m1, n1 = b1.p, b1.q | |
m2, n2 = b2.p, b2.q | |
tau = ilcm(m1*n2, m2*n1) | |
r1 = tau//(m1*n2) | |
r2 = tau//(m2*n1) | |
C1, g1 = _inflate_g(g1, r1) | |
C2, g2 = _inflate_g(g2, r2) | |
g1 = pb(g1) | |
g2 = pb(g2) | |
fac *= C1*C2 | |
a1, b = _get_coeff_exp(g1.argument, x) | |
a2, _ = _get_coeff_exp(g2.argument, x) | |
# arbitrarily tack on the x**s part to g1 | |
# TODO should we try both? | |
exp = (s + 1)/b - 1 | |
fac = fac/(Abs(b) * a1**exp) | |
def tr(l): | |
return [a + exp for a in l] | |
g1 = meijerg(tr(g1.an), tr(g1.aother), tr(g1.bm), tr(g1.bother), a1*x) | |
g2 = meijerg(g2.an, g2.aother, g2.bm, g2.bother, a2*x) | |
from sympy.simplify import powdenest | |
return powdenest(fac, polar=True), g1, g2 | |
def _check_antecedents(g1, g2, x): | |
""" Return a condition under which the integral theorem applies. """ | |
# Yes, this is madness. | |
# XXX TODO this is a testing *nightmare* | |
# NOTE if you update these conditions, please update the documentation as well | |
# The following conditions are found in | |
# [P], Section 2.24.1 | |
# | |
# They are also reproduced (verbatim!) at | |
# https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/ | |
# | |
# Note: k=l=r=alpha=1 | |
sigma, _ = _get_coeff_exp(g1.argument, x) | |
omega, _ = _get_coeff_exp(g2.argument, x) | |
s, t, u, v = S([len(g1.bm), len(g1.an), len(g1.ap), len(g1.bq)]) | |
m, n, p, q = S([len(g2.bm), len(g2.an), len(g2.ap), len(g2.bq)]) | |
bstar = s + t - (u + v)/2 | |
cstar = m + n - (p + q)/2 | |
rho = g1.nu + (u - v)/2 + 1 | |
mu = g2.nu + (p - q)/2 + 1 | |
phi = q - p - (v - u) | |
eta = 1 - (v - u) - mu - rho | |
psi = (pi*(q - m - n) + Abs(unbranched_argument(omega)))/(q - p) | |
theta = (pi*(v - s - t) + Abs(unbranched_argument(sigma)))/(v - u) | |
_debug('Checking antecedents:') | |
_debugf(' sigma=%s, s=%s, t=%s, u=%s, v=%s, b*=%s, rho=%s', | |
(sigma, s, t, u, v, bstar, rho)) | |
_debugf(' omega=%s, m=%s, n=%s, p=%s, q=%s, c*=%s, mu=%s,', | |
(omega, m, n, p, q, cstar, mu)) | |
_debugf(' phi=%s, eta=%s, psi=%s, theta=%s', (phi, eta, psi, theta)) | |
def _c1(): | |
for g in [g1, g2]: | |
for i, j in itertools.product(g.an, g.bm): | |
diff = i - j | |
if diff.is_integer and diff.is_positive: | |
return False | |
return True | |
c1 = _c1() | |
c2 = And(*[re(1 + i + j) > 0 for i in g1.bm for j in g2.bm]) | |
c3 = And(*[re(1 + i + j) < 1 + 1 for i in g1.an for j in g2.an]) | |
c4 = And(*[(p - q)*re(1 + i - 1) - re(mu) > Rational(-3, 2) for i in g1.an]) | |
c5 = And(*[(p - q)*re(1 + i) - re(mu) > Rational(-3, 2) for i in g1.bm]) | |
c6 = And(*[(u - v)*re(1 + i - 1) - re(rho) > Rational(-3, 2) for i in g2.an]) | |
c7 = And(*[(u - v)*re(1 + i) - re(rho) > Rational(-3, 2) for i in g2.bm]) | |
c8 = (Abs(phi) + 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - | |
1)*(v - u)) > 0) | |
c9 = (Abs(phi) - 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - | |
1)*(v - u)) > 0) | |
c10 = (Abs(unbranched_argument(sigma)) < bstar*pi) | |
c11 = Eq(Abs(unbranched_argument(sigma)), bstar*pi) | |
c12 = (Abs(unbranched_argument(omega)) < cstar*pi) | |
c13 = Eq(Abs(unbranched_argument(omega)), cstar*pi) | |
# The following condition is *not* implemented as stated on the wolfram | |
# function site. In the book of Prudnikov there is an additional part | |
# (the And involving re()). However, I only have this book in russian, and | |
# I don't read any russian. The following condition is what other people | |
# have told me it means. | |
# Worryingly, it is different from the condition implemented in REDUCE. | |
# The REDUCE implementation: | |
# https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra/trunk/packages/defint/definta.red | |
# (search for tst14) | |
# The Wolfram alpha version: | |
# https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/03/0014/ | |
z0 = exp(-(bstar + cstar)*pi*S.ImaginaryUnit) | |
zos = unpolarify(z0*omega/sigma) | |
zso = unpolarify(z0*sigma/omega) | |
if zos == 1/zso: | |
c14 = And(Eq(phi, 0), bstar + cstar <= 1, | |
Or(Ne(zos, 1), re(mu + rho + v - u) < 1, | |
re(mu + rho + q - p) < 1)) | |
else: | |
def _cond(z): | |
'''Returns True if abs(arg(1-z)) < pi, avoiding arg(0). | |
Explanation | |
=========== | |
If ``z`` is 1 then arg is NaN. This raises a | |
TypeError on `NaN < pi`. Previously this gave `False` so | |
this behavior has been hardcoded here but someone should | |
check if this NaN is more serious! This NaN is triggered by | |
test_meijerint() in test_meijerint.py: | |
`meijerint_definite(exp(x), x, 0, I)` | |
''' | |
return z != 1 and Abs(arg(1 - z)) < pi | |
c14 = And(Eq(phi, 0), bstar - 1 + cstar <= 0, | |
Or(And(Ne(zos, 1), _cond(zos)), | |
And(re(mu + rho + v - u) < 1, Eq(zos, 1)))) | |
c14_alt = And(Eq(phi, 0), cstar - 1 + bstar <= 0, | |
Or(And(Ne(zso, 1), _cond(zso)), | |
And(re(mu + rho + q - p) < 1, Eq(zso, 1)))) | |
# Since r=k=l=1, in our case there is c14_alt which is the same as calling | |
# us with (g1, g2) = (g2, g1). The conditions below enumerate all cases | |
# (i.e. we don't have to try arguments reversed by hand), and indeed try | |
# all symmetric cases. (i.e. whenever there is a condition involving c14, | |
# there is also a dual condition which is exactly what we would get when g1, | |
# g2 were interchanged, *but c14 was unaltered*). | |
# Hence the following seems correct: | |
c14 = Or(c14, c14_alt) | |
''' | |
When `c15` is NaN (e.g. from `psi` being NaN as happens during | |
'test_issue_4992' and/or `theta` is NaN as in 'test_issue_6253', | |
both in `test_integrals.py`) the comparison to 0 formerly gave False | |
whereas now an error is raised. To keep the old behavior, the value | |
of NaN is replaced with False but perhaps a closer look at this condition | |
should be made: XXX how should conditions leading to c15=NaN be handled? | |
''' | |
try: | |
lambda_c = (q - p)*Abs(omega)**(1/(q - p))*cos(psi) \ | |
+ (v - u)*Abs(sigma)**(1/(v - u))*cos(theta) | |
# the TypeError might be raised here, e.g. if lambda_c is NaN | |
if _eval_cond(lambda_c > 0) != False: | |
c15 = (lambda_c > 0) | |
else: | |
def lambda_s0(c1, c2): | |
return c1*(q - p)*Abs(omega)**(1/(q - p))*sin(psi) \ | |
+ c2*(v - u)*Abs(sigma)**(1/(v - u))*sin(theta) | |
lambda_s = Piecewise( | |
((lambda_s0(+1, +1)*lambda_s0(-1, -1)), | |
And(Eq(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))), | |
(lambda_s0(sign(unbranched_argument(omega)), +1)*lambda_s0(sign(unbranched_argument(omega)), -1), | |
And(Eq(unbranched_argument(sigma), 0), Ne(unbranched_argument(omega), 0))), | |
(lambda_s0(+1, sign(unbranched_argument(sigma)))*lambda_s0(-1, sign(unbranched_argument(sigma))), | |
And(Ne(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))), | |
(lambda_s0(sign(unbranched_argument(omega)), sign(unbranched_argument(sigma))), True)) | |
tmp = [lambda_c > 0, | |
And(Eq(lambda_c, 0), Ne(lambda_s, 0), re(eta) > -1), | |
And(Eq(lambda_c, 0), Eq(lambda_s, 0), re(eta) > 0)] | |
c15 = Or(*tmp) | |
except TypeError: | |
c15 = False | |
for cond, i in [(c1, 1), (c2, 2), (c3, 3), (c4, 4), (c5, 5), (c6, 6), | |
(c7, 7), (c8, 8), (c9, 9), (c10, 10), (c11, 11), | |
(c12, 12), (c13, 13), (c14, 14), (c15, 15)]: | |
_debugf(' c%s: %s', (i, cond)) | |
# We will return Or(*conds) | |
conds = [] | |
def pr(count): | |
_debugf(' case %s: %s', (count, conds[-1])) | |
conds += [And(m*n*s*t != 0, bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, | |
c12)] # 1 | |
pr(1) | |
conds += [And(Eq(u, v), Eq(bstar, 0), cstar.is_positive is True, sigma.is_positive is True, re(rho) < 1, | |
c1, c2, c3, c12)] # 2 | |
pr(2) | |
conds += [And(Eq(p, q), Eq(cstar, 0), bstar.is_positive is True, omega.is_positive is True, re(mu) < 1, | |
c1, c2, c3, c10)] # 3 | |
pr(3) | |
conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), | |
sigma.is_positive is True, omega.is_positive is True, re(mu) < 1, re(rho) < 1, | |
Ne(sigma, omega), c1, c2, c3)] # 4 | |
pr(4) | |
conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), | |
sigma.is_positive is True, omega.is_positive is True, re(mu + rho) < 1, | |
Ne(omega, sigma), c1, c2, c3)] # 5 | |
pr(5) | |
conds += [And(p > q, s.is_positive is True, bstar.is_positive is True, cstar >= 0, | |
c1, c2, c3, c5, c10, c13)] # 6 | |
pr(6) | |
conds += [And(p < q, t.is_positive is True, bstar.is_positive is True, cstar >= 0, | |
c1, c2, c3, c4, c10, c13)] # 7 | |
pr(7) | |
conds += [And(u > v, m.is_positive is True, cstar.is_positive is True, bstar >= 0, | |
c1, c2, c3, c7, c11, c12)] # 8 | |
pr(8) | |
conds += [And(u < v, n.is_positive is True, cstar.is_positive is True, bstar >= 0, | |
c1, c2, c3, c6, c11, c12)] # 9 | |
pr(9) | |
conds += [And(p > q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, | |
re(rho) < 1, c1, c2, c3, c5, c13)] # 10 | |
pr(10) | |
conds += [And(p < q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, | |
re(rho) < 1, c1, c2, c3, c4, c13)] # 11 | |
pr(11) | |
conds += [And(Eq(p, q), u > v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, | |
re(mu) < 1, c1, c2, c3, c7, c11)] # 12 | |
pr(12) | |
conds += [And(Eq(p, q), u < v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, | |
re(mu) < 1, c1, c2, c3, c6, c11)] # 13 | |
pr(13) | |
conds += [And(p < q, u > v, bstar >= 0, cstar >= 0, | |
c1, c2, c3, c4, c7, c11, c13)] # 14 | |
pr(14) | |
conds += [And(p > q, u < v, bstar >= 0, cstar >= 0, | |
c1, c2, c3, c5, c6, c11, c13)] # 15 | |
pr(15) | |
conds += [And(p > q, u > v, bstar >= 0, cstar >= 0, | |
c1, c2, c3, c5, c7, c8, c11, c13, c14)] # 16 | |
pr(16) | |
conds += [And(p < q, u < v, bstar >= 0, cstar >= 0, | |
c1, c2, c3, c4, c6, c9, c11, c13, c14)] # 17 | |
pr(17) | |
conds += [And(Eq(t, 0), s.is_positive is True, bstar.is_positive is True, phi.is_positive is True, c1, c2, c10)] # 18 | |
pr(18) | |
conds += [And(Eq(s, 0), t.is_positive is True, bstar.is_positive is True, phi.is_negative is True, c1, c3, c10)] # 19 | |
pr(19) | |
conds += [And(Eq(n, 0), m.is_positive is True, cstar.is_positive is True, phi.is_negative is True, c1, c2, c12)] # 20 | |
pr(20) | |
conds += [And(Eq(m, 0), n.is_positive is True, cstar.is_positive is True, phi.is_positive is True, c1, c3, c12)] # 21 | |
pr(21) | |
conds += [And(Eq(s*t, 0), bstar.is_positive is True, cstar.is_positive is True, | |
c1, c2, c3, c10, c12)] # 22 | |
pr(22) | |
conds += [And(Eq(m*n, 0), bstar.is_positive is True, cstar.is_positive is True, | |
c1, c2, c3, c10, c12)] # 23 | |
pr(23) | |
# The following case is from [Luke1969]. As far as I can tell, it is *not* | |
# covered by Prudnikov's. | |
# Let G1 and G2 be the two G-functions. Suppose the integral exists from | |
# 0 to a > 0 (this is easy the easy part), that G1 is exponential decay at | |
# infinity, and that the mellin transform of G2 exists. | |
# Then the integral exists. | |
mt1_exists = _check_antecedents_1(g1, x, helper=True) | |
mt2_exists = _check_antecedents_1(g2, x, helper=True) | |
conds += [And(mt2_exists, Eq(t, 0), u < s, bstar.is_positive is True, c10, c1, c2, c3)] | |
pr('E1') | |
conds += [And(mt2_exists, Eq(s, 0), v < t, bstar.is_positive is True, c10, c1, c2, c3)] | |
pr('E2') | |
conds += [And(mt1_exists, Eq(n, 0), p < m, cstar.is_positive is True, c12, c1, c2, c3)] | |
pr('E3') | |
conds += [And(mt1_exists, Eq(m, 0), q < n, cstar.is_positive is True, c12, c1, c2, c3)] | |
pr('E4') | |
# Let's short-circuit if this worked ... | |
# the rest is corner-cases and terrible to read. | |
r = Or(*conds) | |
if _eval_cond(r) != False: | |
return r | |
conds += [And(m + n > p, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, | |
Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi, | |
c1, c2, c10, c14, c15)] # 24 | |
pr(24) | |
conds += [And(m + n > q, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, | |
Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi, | |
c1, c3, c10, c14, c15)] # 25 | |
pr(25) | |
conds += [And(Eq(p, q - 1), Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, | |
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), | |
c1, c2, c10, c14, c15)] # 26 | |
pr(26) | |
conds += [And(Eq(p, q + 1), Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, | |
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), | |
c1, c3, c10, c14, c15)] # 27 | |
pr(27) | |
conds += [And(p < q - 1, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, | |
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), | |
Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi, | |
c1, c2, c10, c14, c15)] # 28 | |
pr(28) | |
conds += [And( | |
p > q + 1, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, | |
cstar*pi < Abs(unbranched_argument(omega)), | |
Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi, | |
c1, c3, c10, c14, c15)] # 29 | |
pr(29) | |
conds += [And(Eq(n, 0), Eq(phi, 0), s + t > 0, m.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, | |
Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi, | |
c1, c2, c12, c14, c15)] # 30 | |
pr(30) | |
conds += [And(Eq(m, 0), Eq(phi, 0), s + t > v, n.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, | |
Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi, | |
c1, c3, c12, c14, c15)] # 31 | |
pr(31) | |
conds += [And(Eq(n, 0), Eq(phi, 0), Eq(u, v - 1), m.is_positive is True, cstar.is_positive is True, | |
bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), | |
Abs(unbranched_argument(sigma)) < (bstar + 1)*pi, | |
c1, c2, c12, c14, c15)] # 32 | |
pr(32) | |
conds += [And(Eq(m, 0), Eq(phi, 0), Eq(u, v + 1), n.is_positive is True, cstar.is_positive is True, | |
bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), | |
Abs(unbranched_argument(sigma)) < (bstar + 1)*pi, | |
c1, c3, c12, c14, c15)] # 33 | |
pr(33) | |
conds += [And( | |
Eq(n, 0), Eq(phi, 0), u < v - 1, m.is_positive is True, cstar.is_positive is True, bstar >= 0, | |
bstar*pi < Abs(unbranched_argument(sigma)), | |
Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi, | |
c1, c2, c12, c14, c15)] # 34 | |
pr(34) | |
conds += [And( | |
Eq(m, 0), Eq(phi, 0), u > v + 1, n.is_positive is True, cstar.is_positive is True, bstar >= 0, | |
bstar*pi < Abs(unbranched_argument(sigma)), | |
Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi, | |
c1, c3, c12, c14, c15)] # 35 | |
pr(35) | |
return Or(*conds) | |
# NOTE An alternative, but as far as I can tell weaker, set of conditions | |
# can be found in [L, section 5.6.2]. | |
def _int0oo(g1, g2, x): | |
""" | |
Express integral from zero to infinity g1*g2 using a G function, | |
assuming the necessary conditions are fulfilled. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import _int0oo | |
>>> from sympy.abc import s, t, m | |
>>> from sympy import meijerg, S | |
>>> g1 = meijerg([], [], [-S(1)/2, 0], [], s**2*t/4) | |
>>> g2 = meijerg([], [], [m/2], [-m/2], t/4) | |
>>> _int0oo(g1, g2, t) | |
4*meijerg(((0, 1/2), ()), ((m/2,), (-m/2,)), s**(-2))/s**2 | |
""" | |
# See: [L, section 5.6.2, equation (1)] | |
eta, _ = _get_coeff_exp(g1.argument, x) | |
omega, _ = _get_coeff_exp(g2.argument, x) | |
def neg(l): | |
return [-x for x in l] | |
a1 = neg(g1.bm) + list(g2.an) | |
a2 = list(g2.aother) + neg(g1.bother) | |
b1 = neg(g1.an) + list(g2.bm) | |
b2 = list(g2.bother) + neg(g1.aother) | |
return meijerg(a1, a2, b1, b2, omega/eta)/eta | |
def _rewrite_inversion(fac, po, g, x): | |
""" Absorb ``po`` == x**s into g. """ | |
_, s = _get_coeff_exp(po, x) | |
a, b = _get_coeff_exp(g.argument, x) | |
def tr(l): | |
return [t + s/b for t in l] | |
from sympy.simplify import powdenest | |
return (powdenest(fac/a**(s/b), polar=True), | |
meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), g.argument)) | |
def _check_antecedents_inversion(g, x): | |
""" Check antecedents for the laplace inversion integral. """ | |
_debug('Checking antecedents for inversion:') | |
z = g.argument | |
_, e = _get_coeff_exp(z, x) | |
if e < 0: | |
_debug(' Flipping G.') | |
# We want to assume that argument gets large as |x| -> oo | |
return _check_antecedents_inversion(_flip_g(g), x) | |
def statement_half(a, b, c, z, plus): | |
coeff, exponent = _get_coeff_exp(z, x) | |
a *= exponent | |
b *= coeff**c | |
c *= exponent | |
conds = [] | |
wp = b*exp(S.ImaginaryUnit*re(c)*pi/2) | |
wm = b*exp(-S.ImaginaryUnit*re(c)*pi/2) | |
if plus: | |
w = wp | |
else: | |
w = wm | |
conds += [And(Or(Eq(b, 0), re(c) <= 0), re(a) <= -1)] | |
conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) < 0)] | |
conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) <= 0, | |
re(a) <= -1)] | |
return Or(*conds) | |
def statement(a, b, c, z): | |
""" Provide a convergence statement for z**a * exp(b*z**c), | |
c/f sphinx docs. """ | |
return And(statement_half(a, b, c, z, True), | |
statement_half(a, b, c, z, False)) | |
# Notations from [L], section 5.7-10 | |
m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) | |
tau = m + n - p | |
nu = q - m - n | |
rho = (tau - nu)/2 | |
sigma = q - p | |
if sigma == 1: | |
epsilon = S.Half | |
elif sigma > 1: | |
epsilon = 1 | |
else: | |
epsilon = S.NaN | |
theta = ((1 - sigma)/2 + Add(*g.bq) - Add(*g.ap))/sigma | |
delta = g.delta | |
_debugf(' m=%s, n=%s, p=%s, q=%s, tau=%s, nu=%s, rho=%s, sigma=%s', | |
(m, n, p, q, tau, nu, rho, sigma)) | |
_debugf(' epsilon=%s, theta=%s, delta=%s', (epsilon, theta, delta)) | |
# First check if the computation is valid. | |
if not (g.delta >= e/2 or (p >= 1 and p >= q)): | |
_debug(' Computation not valid for these parameters.') | |
return False | |
# Now check if the inversion integral exists. | |
# Test "condition A" | |
for a, b in itertools.product(g.an, g.bm): | |
if (a - b).is_integer and a > b: | |
_debug(' Not a valid G function.') | |
return False | |
# There are two cases. If p >= q, we can directly use a slater expansion | |
# like [L], 5.2 (11). Note in particular that the asymptotics of such an | |
# expansion even hold when some of the parameters differ by integers, i.e. | |
# the formula itself would not be valid! (b/c G functions are cts. in their | |
# parameters) | |
# When p < q, we need to use the theorems of [L], 5.10. | |
if p >= q: | |
_debug(' Using asymptotic Slater expansion.') | |
return And(*[statement(a - 1, 0, 0, z) for a in g.an]) | |
def E(z): | |
return And(*[statement(a - 1, 0, 0, z) for a in g.an]) | |
def H(z): | |
return statement(theta, -sigma, 1/sigma, z) | |
def Hp(z): | |
return statement_half(theta, -sigma, 1/sigma, z, True) | |
def Hm(z): | |
return statement_half(theta, -sigma, 1/sigma, z, False) | |
# [L], section 5.10 | |
conds = [] | |
# Theorem 1 -- p < q from test above | |
conds += [And(1 <= n, 1 <= m, rho*pi - delta >= pi/2, delta > 0, | |
E(z*exp(S.ImaginaryUnit*pi*(nu + 1))))] | |
# Theorem 2, statements (2) and (3) | |
conds += [And(p + 1 <= m, m + 1 <= q, delta > 0, delta < pi/2, n == 0, | |
(m - p + 1)*pi - delta >= pi/2, | |
Hp(z*exp(S.ImaginaryUnit*pi*(q - m))), | |
Hm(z*exp(-S.ImaginaryUnit*pi*(q - m))))] | |
# Theorem 2, statement (5) -- p < q from test above | |
conds += [And(m == q, n == 0, delta > 0, | |
(sigma + epsilon)*pi - delta >= pi/2, H(z))] | |
# Theorem 3, statements (6) and (7) | |
conds += [And(Or(And(p <= q - 2, 1 <= tau, tau <= sigma/2), | |
And(p + 1 <= m + n, m + n <= (p + q)/2)), | |
delta > 0, delta < pi/2, (tau + 1)*pi - delta >= pi/2, | |
Hp(z*exp(S.ImaginaryUnit*pi*nu)), | |
Hm(z*exp(-S.ImaginaryUnit*pi*nu)))] | |
# Theorem 4, statements (10) and (11) -- p < q from test above | |
conds += [And(1 <= m, rho > 0, delta > 0, delta + rho*pi < pi/2, | |
(tau + epsilon)*pi - delta >= pi/2, | |
Hp(z*exp(S.ImaginaryUnit*pi*nu)), | |
Hm(z*exp(-S.ImaginaryUnit*pi*nu)))] | |
# Trivial case | |
conds += [m == 0] | |
# TODO | |
# Theorem 5 is quite general | |
# Theorem 6 contains special cases for q=p+1 | |
return Or(*conds) | |
def _int_inversion(g, x, t): | |
""" | |
Compute the laplace inversion integral, assuming the formula applies. | |
""" | |
b, a = _get_coeff_exp(g.argument, x) | |
C, g = _inflate_fox_h(meijerg(g.an, g.aother, g.bm, g.bother, b/t**a), -a) | |
return C/t*g | |
#################################################################### | |
# Finally, the real meat. | |
#################################################################### | |
_lookup_table = None | |
def _rewrite_single(f, x, recursive=True): | |
""" | |
Try to rewrite f as a sum of single G functions of the form | |
C*x**s*G(a*x**b), where b is a rational number and C is independent of x. | |
We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) | |
or (a, ()). | |
Returns a list of tuples (C, s, G) and a condition cond. | |
Returns None on failure. | |
""" | |
from .transforms import (mellin_transform, inverse_mellin_transform, | |
IntegralTransformError, MellinTransformStripError) | |
global _lookup_table | |
if not _lookup_table: | |
_lookup_table = {} | |
_create_lookup_table(_lookup_table) | |
if isinstance(f, meijerg): | |
coeff, m = factor(f.argument, x).as_coeff_mul(x) | |
if len(m) > 1: | |
return None | |
m = m[0] | |
if m.is_Pow: | |
if m.base != x or not m.exp.is_Rational: | |
return None | |
elif m != x: | |
return None | |
return [(1, 0, meijerg(f.an, f.aother, f.bm, f.bother, coeff*m))], True | |
f_ = f | |
f = f.subs(x, z) | |
t = _mytype(f, z) | |
if t in _lookup_table: | |
l = _lookup_table[t] | |
for formula, terms, cond, hint in l: | |
subs = f.match(formula, old=True) | |
if subs: | |
subs_ = {} | |
for fro, to in subs.items(): | |
subs_[fro] = unpolarify(polarify(to, lift=True), | |
exponents_only=True) | |
subs = subs_ | |
if not isinstance(hint, bool): | |
hint = hint.subs(subs) | |
if hint == False: | |
continue | |
if not isinstance(cond, (bool, BooleanAtom)): | |
cond = unpolarify(cond.subs(subs)) | |
if _eval_cond(cond) == False: | |
continue | |
if not isinstance(terms, list): | |
terms = terms(subs) | |
res = [] | |
for fac, g in terms: | |
r1 = _get_coeff_exp(unpolarify(fac.subs(subs).subs(z, x), | |
exponents_only=True), x) | |
try: | |
g = g.subs(subs).subs(z, x) | |
except ValueError: | |
continue | |
# NOTE these substitutions can in principle introduce oo, | |
# zoo and other absurdities. It shouldn't matter, | |
# but better be safe. | |
if Tuple(*(r1 + (g,))).has(S.Infinity, S.ComplexInfinity, S.NegativeInfinity): | |
continue | |
g = meijerg(g.an, g.aother, g.bm, g.bother, | |
unpolarify(g.argument, exponents_only=True)) | |
res.append(r1 + (g,)) | |
if res: | |
return res, cond | |
# try recursive mellin transform | |
if not recursive: | |
return None | |
_debug('Trying recursive Mellin transform method.') | |
def my_imt(F, s, x, strip): | |
""" Calling simplify() all the time is slow and not helpful, since | |
most of the time it only factors things in a way that has to be | |
un-done anyway. But sometimes it can remove apparent poles. """ | |
# XXX should this be in inverse_mellin_transform? | |
try: | |
return inverse_mellin_transform(F, s, x, strip, | |
as_meijerg=True, needeval=True) | |
except MellinTransformStripError: | |
from sympy.simplify import simplify | |
return inverse_mellin_transform( | |
simplify(cancel(expand(F))), s, x, strip, | |
as_meijerg=True, needeval=True) | |
f = f_ | |
s = _dummy('s', 'rewrite-single', f) | |
# to avoid infinite recursion, we have to force the two g functions case | |
def my_integrator(f, x): | |
r = _meijerint_definite_4(f, x, only_double=True) | |
if r is not None: | |
from sympy.simplify import hyperexpand | |
res, cond = r | |
res = _my_unpolarify(hyperexpand(res, rewrite='nonrepsmall')) | |
return Piecewise((res, cond), | |
(Integral(f, (x, S.Zero, S.Infinity)), True)) | |
return Integral(f, (x, S.Zero, S.Infinity)) | |
try: | |
F, strip, _ = mellin_transform(f, x, s, integrator=my_integrator, | |
simplify=False, needeval=True) | |
g = my_imt(F, s, x, strip) | |
except IntegralTransformError: | |
g = None | |
if g is None: | |
# We try to find an expression by analytic continuation. | |
# (also if the dummy is already in the expression, there is no point in | |
# putting in another one) | |
a = _dummy_('a', 'rewrite-single') | |
if a not in f.free_symbols and _is_analytic(f, x): | |
try: | |
F, strip, _ = mellin_transform(f.subs(x, a*x), x, s, | |
integrator=my_integrator, | |
needeval=True, simplify=False) | |
g = my_imt(F, s, x, strip).subs(a, 1) | |
except IntegralTransformError: | |
g = None | |
if g is None or g.has(S.Infinity, S.NaN, S.ComplexInfinity): | |
_debug('Recursive Mellin transform failed.') | |
return None | |
args = Add.make_args(g) | |
res = [] | |
for f in args: | |
c, m = f.as_coeff_mul(x) | |
if len(m) > 1: | |
raise NotImplementedError('Unexpected form...') | |
g = m[0] | |
a, b = _get_coeff_exp(g.argument, x) | |
res += [(c, 0, meijerg(g.an, g.aother, g.bm, g.bother, | |
unpolarify(polarify( | |
a, lift=True), exponents_only=True) | |
*x**b))] | |
_debug('Recursive Mellin transform worked:', g) | |
return res, True | |
def _rewrite1(f, x, recursive=True): | |
""" | |
Try to rewrite ``f`` using a (sum of) single G functions with argument a*x**b. | |
Return fac, po, g such that f = fac*po*g, fac is independent of ``x``. | |
and po = x**s. | |
Here g is a result from _rewrite_single. | |
Return None on failure. | |
""" | |
fac, po, g = _split_mul(f, x) | |
g = _rewrite_single(g, x, recursive) | |
if g: | |
return fac, po, g[0], g[1] | |
def _rewrite2(f, x): | |
""" | |
Try to rewrite ``f`` as a product of two G functions of arguments a*x**b. | |
Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is | |
independent of x and po is x**s. | |
Here g1 and g2 are results of _rewrite_single. | |
Returns None on failure. | |
""" | |
fac, po, g = _split_mul(f, x) | |
if any(_rewrite_single(expr, x, False) is None for expr in _mul_args(g)): | |
return None | |
l = _mul_as_two_parts(g) | |
if not l: | |
return None | |
l = list(ordered(l, [ | |
lambda p: max(len(_exponents(p[0], x)), len(_exponents(p[1], x))), | |
lambda p: max(len(_functions(p[0], x)), len(_functions(p[1], x))), | |
lambda p: max(len(_find_splitting_points(p[0], x)), | |
len(_find_splitting_points(p[1], x)))])) | |
for recursive, (fac1, fac2) in itertools.product((False, True), l): | |
g1 = _rewrite_single(fac1, x, recursive) | |
g2 = _rewrite_single(fac2, x, recursive) | |
if g1 and g2: | |
cond = And(g1[1], g2[1]) | |
if cond != False: | |
return fac, po, g1[0], g2[0], cond | |
def meijerint_indefinite(f, x): | |
""" | |
Compute an indefinite integral of ``f`` by rewriting it as a G function. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import meijerint_indefinite | |
>>> from sympy import sin | |
>>> from sympy.abc import x | |
>>> meijerint_indefinite(sin(x), x) | |
-cos(x) | |
""" | |
f = sympify(f) | |
results = [] | |
for a in sorted(_find_splitting_points(f, x) | {S.Zero}, key=default_sort_key): | |
res = _meijerint_indefinite_1(f.subs(x, x + a), x) | |
if not res: | |
continue | |
res = res.subs(x, x - a) | |
if _has(res, hyper, meijerg): | |
results.append(res) | |
else: | |
return res | |
if f.has(HyperbolicFunction): | |
_debug('Try rewriting hyperbolics in terms of exp.') | |
rv = meijerint_indefinite( | |
_rewrite_hyperbolics_as_exp(f), x) | |
if rv: | |
if not isinstance(rv, list): | |
from sympy.simplify.radsimp import collect | |
return collect(factor_terms(rv), rv.atoms(exp)) | |
results.extend(rv) | |
if results: | |
return next(ordered(results)) | |
def _meijerint_indefinite_1(f, x): | |
""" Helper that does not attempt any substitution. """ | |
_debug('Trying to compute the indefinite integral of', f, 'wrt', x) | |
from sympy.simplify import hyperexpand, powdenest | |
gs = _rewrite1(f, x) | |
if gs is None: | |
# Note: the code that calls us will do expand() and try again | |
return None | |
fac, po, gl, cond = gs | |
_debug(' could rewrite:', gs) | |
res = S.Zero | |
for C, s, g in gl: | |
a, b = _get_coeff_exp(g.argument, x) | |
_, c = _get_coeff_exp(po, x) | |
c += s | |
# we do a substitution t=a*x**b, get integrand fac*t**rho*g | |
fac_ = fac * C * x**(1 + c) / b | |
rho = (c + 1)/b | |
# we now use t**rho*G(params, t) = G(params + rho, t) | |
# [L, page 150, equation (4)] | |
# and integral G(params, t) dt = G(1, params+1, 0, t) | |
# (or a similar expression with 1 and 0 exchanged ... pick the one | |
# which yields a well-defined function) | |
# [R, section 5] | |
# (Note that this dummy will immediately go away again, so we | |
# can safely pass S.One for ``expr``.) | |
t = _dummy('t', 'meijerint-indefinite', S.One) | |
def tr(p): | |
return [a + rho for a in p] | |
if any(b.is_integer and (b <= 0) == True for b in tr(g.bm)): | |
r = -meijerg( | |
list(g.an), list(g.aother) + [1-rho], list(g.bm) + [-rho], list(g.bother), t) | |
else: | |
r = meijerg( | |
list(g.an) + [1-rho], list(g.aother), list(g.bm), list(g.bother) + [-rho], t) | |
# The antiderivative is most often expected to be defined | |
# in the neighborhood of x = 0. | |
if b.is_extended_nonnegative and not f.subs(x, 0).has(S.NaN, S.ComplexInfinity): | |
place = 0 # Assume we can expand at zero | |
else: | |
place = None | |
r = hyperexpand(r.subs(t, a*x**b), place=place) | |
# now substitute back | |
# Note: we really do want the powers of x to combine. | |
res += powdenest(fac_*r, polar=True) | |
def _clean(res): | |
"""This multiplies out superfluous powers of x we created, and chops off | |
constants: | |
>> _clean(x*(exp(x)/x - 1/x) + 3) | |
exp(x) | |
cancel is used before mul_expand since it is possible for an | |
expression to have an additive constant that does not become isolated | |
with simple expansion. Such a situation was identified in issue 6369: | |
Examples | |
======== | |
>>> from sympy import sqrt, cancel | |
>>> from sympy.abc import x | |
>>> a = sqrt(2*x + 1) | |
>>> bad = (3*x*a**5 + 2*x - a**5 + 1)/a**2 | |
>>> bad.expand().as_independent(x)[0] | |
0 | |
>>> cancel(bad).expand().as_independent(x)[0] | |
1 | |
""" | |
res = expand_mul(cancel(res), deep=False) | |
return Add._from_args(res.as_coeff_add(x)[1]) | |
res = piecewise_fold(res, evaluate=None) | |
if res.is_Piecewise: | |
newargs = [] | |
for e, c in res.args: | |
e = _my_unpolarify(_clean(e)) | |
newargs += [(e, c)] | |
res = Piecewise(*newargs, evaluate=False) | |
else: | |
res = _my_unpolarify(_clean(res)) | |
return Piecewise((res, _my_unpolarify(cond)), (Integral(f, x), True)) | |
def meijerint_definite(f, x, a, b): | |
""" | |
Integrate ``f`` over the interval [``a``, ``b``], by rewriting it as a product | |
of two G functions, or as a single G function. | |
Return res, cond, where cond are convergence conditions. | |
Examples | |
======== | |
>>> from sympy.integrals.meijerint import meijerint_definite | |
>>> from sympy import exp, oo | |
>>> from sympy.abc import x | |
>>> meijerint_definite(exp(-x**2), x, -oo, oo) | |
(sqrt(pi), True) | |
This function is implemented as a succession of functions | |
meijerint_definite, _meijerint_definite_2, _meijerint_definite_3, | |
_meijerint_definite_4. Each function in the list calls the next one | |
(presumably) several times. This means that calling meijerint_definite | |
can be very costly. | |
""" | |
# This consists of three steps: | |
# 1) Change the integration limits to 0, oo | |
# 2) Rewrite in terms of G functions | |
# 3) Evaluate the integral | |
# | |
# There are usually several ways of doing this, and we want to try all. | |
# This function does (1), calls _meijerint_definite_2 for step (2). | |
_debugf('Integrating %s wrt %s from %s to %s.', (f, x, a, b)) | |
f = sympify(f) | |
if f.has(DiracDelta): | |
_debug('Integrand has DiracDelta terms - giving up.') | |
return None | |
if f.has(SingularityFunction): | |
_debug('Integrand has Singularity Function terms - giving up.') | |
return None | |
f_, x_, a_, b_ = f, x, a, b | |
# Let's use a dummy in case any of the boundaries has x. | |
d = Dummy('x') | |
f = f.subs(x, d) | |
x = d | |
if a == b: | |
return (S.Zero, True) | |
results = [] | |
if a is S.NegativeInfinity and b is not S.Infinity: | |
return meijerint_definite(f.subs(x, -x), x, -b, -a) | |
elif a is S.NegativeInfinity: | |
# Integrating -oo to oo. We need to find a place to split the integral. | |
_debug(' Integrating -oo to +oo.') | |
innermost = _find_splitting_points(f, x) | |
_debug(' Sensible splitting points:', innermost) | |
for c in sorted(innermost, key=default_sort_key, reverse=True) + [S.Zero]: | |
_debug(' Trying to split at', c) | |
if not c.is_extended_real: | |
_debug(' Non-real splitting point.') | |
continue | |
res1 = _meijerint_definite_2(f.subs(x, x + c), x) | |
if res1 is None: | |
_debug(' But could not compute first integral.') | |
continue | |
res2 = _meijerint_definite_2(f.subs(x, c - x), x) | |
if res2 is None: | |
_debug(' But could not compute second integral.') | |
continue | |
res1, cond1 = res1 | |
res2, cond2 = res2 | |
cond = _condsimp(And(cond1, cond2)) | |
if cond == False: | |
_debug(' But combined condition is always false.') | |
continue | |
res = res1 + res2 | |
return res, cond | |
elif a is S.Infinity: | |
res = meijerint_definite(f, x, b, S.Infinity) | |
return -res[0], res[1] | |
elif (a, b) == (S.Zero, S.Infinity): | |
# This is a common case - try it directly first. | |
res = _meijerint_definite_2(f, x) | |
if res: | |
if _has(res[0], meijerg): | |
results.append(res) | |
else: | |
return res | |
else: | |
if b is S.Infinity: | |
for split in _find_splitting_points(f, x): | |
if (a - split >= 0) == True: | |
_debugf('Trying x -> x + %s', split) | |
res = _meijerint_definite_2(f.subs(x, x + split) | |
*Heaviside(x + split - a), x) | |
if res: | |
if _has(res[0], meijerg): | |
results.append(res) | |
else: | |
return res | |
f = f.subs(x, x + a) | |
b = b - a | |
a = 0 | |
if b is not S.Infinity: | |
phi = exp(S.ImaginaryUnit*arg(b)) | |
b = Abs(b) | |
f = f.subs(x, phi*x) | |
f *= Heaviside(b - x)*phi | |
b = S.Infinity | |
_debug('Changed limits to', a, b) | |
_debug('Changed function to', f) | |
res = _meijerint_definite_2(f, x) | |
if res: | |
if _has(res[0], meijerg): | |
results.append(res) | |
else: | |
return res | |
if f_.has(HyperbolicFunction): | |
_debug('Try rewriting hyperbolics in terms of exp.') | |
rv = meijerint_definite( | |
_rewrite_hyperbolics_as_exp(f_), x_, a_, b_) | |
if rv: | |
if not isinstance(rv, list): | |
from sympy.simplify.radsimp import collect | |
rv = (collect(factor_terms(rv[0]), rv[0].atoms(exp)),) + rv[1:] | |
return rv | |
results.extend(rv) | |
if results: | |
return next(ordered(results)) | |
def _guess_expansion(f, x): | |
""" Try to guess sensible rewritings for integrand f(x). """ | |
res = [(f, 'original integrand')] | |
orig = res[-1][0] | |
saw = {orig} | |
expanded = expand_mul(orig) | |
if expanded not in saw: | |
res += [(expanded, 'expand_mul')] | |
saw.add(expanded) | |
expanded = expand(orig) | |
if expanded not in saw: | |
res += [(expanded, 'expand')] | |
saw.add(expanded) | |
if orig.has(TrigonometricFunction, HyperbolicFunction): | |
expanded = expand_mul(expand_trig(orig)) | |
if expanded not in saw: | |
res += [(expanded, 'expand_trig, expand_mul')] | |
saw.add(expanded) | |
if orig.has(cos, sin): | |
from sympy.simplify.fu import sincos_to_sum | |
reduced = sincos_to_sum(orig) | |
if reduced not in saw: | |
res += [(reduced, 'trig power reduction')] | |
saw.add(reduced) | |
return res | |
def _meijerint_definite_2(f, x): | |
""" | |
Try to integrate f dx from zero to infinity. | |
The body of this function computes various 'simplifications' | |
f1, f2, ... of f (e.g. by calling expand_mul(), trigexpand() | |
- see _guess_expansion) and calls _meijerint_definite_3 with each of | |
these in succession. | |
If _meijerint_definite_3 succeeds with any of the simplified functions, | |
returns this result. | |
""" | |
# This function does preparation for (2), calls | |
# _meijerint_definite_3 for (2) and (3) combined. | |
# use a positive dummy - we integrate from 0 to oo | |
# XXX if a nonnegative symbol is used there will be test failures | |
dummy = _dummy('x', 'meijerint-definite2', f, positive=True) | |
f = f.subs(x, dummy) | |
x = dummy | |
if f == 0: | |
return S.Zero, True | |
for g, explanation in _guess_expansion(f, x): | |
_debug('Trying', explanation) | |
res = _meijerint_definite_3(g, x) | |
if res: | |
return res | |
def _meijerint_definite_3(f, x): | |
""" | |
Try to integrate f dx from zero to infinity. | |
This function calls _meijerint_definite_4 to try to compute the | |
integral. If this fails, it tries using linearity. | |
""" | |
res = _meijerint_definite_4(f, x) | |
if res and res[1] != False: | |
return res | |
if f.is_Add: | |
_debug('Expanding and evaluating all terms.') | |
ress = [_meijerint_definite_4(g, x) for g in f.args] | |
if all(r is not None for r in ress): | |
conds = [] | |
res = S.Zero | |
for r, c in ress: | |
res += r | |
conds += [c] | |
c = And(*conds) | |
if c != False: | |
return res, c | |
def _my_unpolarify(f): | |
return _eval_cond(unpolarify(f)) | |
def _meijerint_definite_4(f, x, only_double=False): | |
""" | |
Try to integrate f dx from zero to infinity. | |
Explanation | |
=========== | |
This function tries to apply the integration theorems found in literature, | |
i.e. it tries to rewrite f as either one or a product of two G-functions. | |
The parameter ``only_double`` is used internally in the recursive algorithm | |
to disable trying to rewrite f as a single G-function. | |
""" | |
from sympy.simplify import hyperexpand | |
# This function does (2) and (3) | |
_debug('Integrating', f) | |
# Try single G function. | |
if not only_double: | |
gs = _rewrite1(f, x, recursive=False) | |
if gs is not None: | |
fac, po, g, cond = gs | |
_debug('Could rewrite as single G function:', fac, po, g) | |
res = S.Zero | |
for C, s, f in g: | |
if C == 0: | |
continue | |
C, f = _rewrite_saxena_1(fac*C, po*x**s, f, x) | |
res += C*_int0oo_1(f, x) | |
cond = And(cond, _check_antecedents_1(f, x)) | |
if cond == False: | |
break | |
cond = _my_unpolarify(cond) | |
if cond == False: | |
_debug('But cond is always False.') | |
else: | |
_debug('Result before branch substitutions is:', res) | |
return _my_unpolarify(hyperexpand(res)), cond | |
# Try two G functions. | |
gs = _rewrite2(f, x) | |
if gs is not None: | |
for full_pb in [False, True]: | |
fac, po, g1, g2, cond = gs | |
_debug('Could rewrite as two G functions:', fac, po, g1, g2) | |
res = S.Zero | |
for C1, s1, f1 in g1: | |
for C2, s2, f2 in g2: | |
r = _rewrite_saxena(fac*C1*C2, po*x**(s1 + s2), | |
f1, f2, x, full_pb) | |
if r is None: | |
_debug('Non-rational exponents.') | |
return | |
C, f1_, f2_ = r | |
_debug('Saxena subst for yielded:', C, f1_, f2_) | |
cond = And(cond, _check_antecedents(f1_, f2_, x)) | |
if cond == False: | |
break | |
res += C*_int0oo(f1_, f2_, x) | |
else: | |
continue | |
break | |
cond = _my_unpolarify(cond) | |
if cond == False: | |
_debugf('But cond is always False (full_pb=%s).', full_pb) | |
else: | |
_debugf('Result before branch substitutions is: %s', (res, )) | |
if only_double: | |
return res, cond | |
return _my_unpolarify(hyperexpand(res)), cond | |
def meijerint_inversion(f, x, t): | |
r""" | |
Compute the inverse laplace transform | |
$\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx$, | |
for real c larger than the real part of all singularities of ``f``. | |
Note that ``t`` is always assumed real and positive. | |
Return None if the integral does not exist or could not be evaluated. | |
Examples | |
======== | |
>>> from sympy.abc import x, t | |
>>> from sympy.integrals.meijerint import meijerint_inversion | |
>>> meijerint_inversion(1/x, x, t) | |
Heaviside(t) | |
""" | |
f_ = f | |
t_ = t | |
t = Dummy('t', polar=True) # We don't want sqrt(t**2) = abs(t) etc | |
f = f.subs(t_, t) | |
_debug('Laplace-inverting', f) | |
if not _is_analytic(f, x): | |
_debug('But expression is not analytic.') | |
return None | |
# Exponentials correspond to shifts; we filter them out and then | |
# shift the result later. If we are given an Add this will not | |
# work, but the calling code will take care of that. | |
shift = S.Zero | |
if f.is_Mul: | |
args = list(f.args) | |
elif isinstance(f, exp): | |
args = [f] | |
else: | |
args = None | |
if args: | |
newargs = [] | |
exponentials = [] | |
while args: | |
arg = args.pop() | |
if isinstance(arg, exp): | |
arg2 = expand(arg) | |
if arg2.is_Mul: | |
args += arg2.args | |
continue | |
try: | |
a, b = _get_coeff_exp(arg.args[0], x) | |
except _CoeffExpValueError: | |
b = 0 | |
if b == 1: | |
exponentials.append(a) | |
else: | |
newargs.append(arg) | |
elif arg.is_Pow: | |
arg2 = expand(arg) | |
if arg2.is_Mul: | |
args += arg2.args | |
continue | |
if x not in arg.base.free_symbols: | |
try: | |
a, b = _get_coeff_exp(arg.exp, x) | |
except _CoeffExpValueError: | |
b = 0 | |
if b == 1: | |
exponentials.append(a*log(arg.base)) | |
newargs.append(arg) | |
else: | |
newargs.append(arg) | |
shift = Add(*exponentials) | |
f = Mul(*newargs) | |
if x not in f.free_symbols: | |
_debug('Expression consists of constant and exp shift:', f, shift) | |
cond = Eq(im(shift), 0) | |
if cond == False: | |
_debug('but shift is nonreal, cannot be a Laplace transform') | |
return None | |
res = f*DiracDelta(t + shift) | |
_debug('Result is a delta function, possibly conditional:', res, cond) | |
# cond is True or Eq | |
return Piecewise((res.subs(t, t_), cond)) | |
gs = _rewrite1(f, x) | |
if gs is not None: | |
fac, po, g, cond = gs | |
_debug('Could rewrite as single G function:', fac, po, g) | |
res = S.Zero | |
for C, s, f in g: | |
C, f = _rewrite_inversion(fac*C, po*x**s, f, x) | |
res += C*_int_inversion(f, x, t) | |
cond = And(cond, _check_antecedents_inversion(f, x)) | |
if cond == False: | |
break | |
cond = _my_unpolarify(cond) | |
if cond == False: | |
_debug('But cond is always False.') | |
else: | |
_debug('Result before branch substitution:', res) | |
from sympy.simplify import hyperexpand | |
res = _my_unpolarify(hyperexpand(res)) | |
if not res.has(Heaviside): | |
res *= Heaviside(t) | |
res = res.subs(t, t + shift) | |
if not isinstance(cond, bool): | |
cond = cond.subs(t, t + shift) | |
from .transforms import InverseLaplaceTransform | |
return Piecewise((res.subs(t, t_), cond), | |
(InverseLaplaceTransform(f_.subs(t, t_), x, t_, None), True)) | |