Spaces:
Sleeping
Sleeping
"""This module implements tools for integrating rational functions. """ | |
from sympy.core.function import Lambda | |
from sympy.core.numbers import I | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Dummy, Symbol, symbols) | |
from sympy.functions.elementary.exponential import log | |
from sympy.functions.elementary.trigonometric import atan | |
from sympy.polys.polyroots import roots | |
from sympy.polys.polytools import cancel | |
from sympy.polys.rootoftools import RootSum | |
from sympy.polys import Poly, resultant, ZZ | |
def ratint(f, x, **flags): | |
""" | |
Performs indefinite integration of rational functions. | |
Explanation | |
=========== | |
Given a field :math:`K` and a rational function :math:`f = p/q`, | |
where :math:`p` and :math:`q` are polynomials in :math:`K[x]`, | |
returns a function :math:`g` such that :math:`f = g'`. | |
Examples | |
======== | |
>>> from sympy.integrals.rationaltools import ratint | |
>>> from sympy.abc import x | |
>>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x) | |
(12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1) | |
References | |
========== | |
.. [1] M. Bronstein, Symbolic Integration I: Transcendental | |
Functions, Second Edition, Springer-Verlag, 2005, pp. 35-70 | |
See Also | |
======== | |
sympy.integrals.integrals.Integral.doit | |
sympy.integrals.rationaltools.ratint_logpart | |
sympy.integrals.rationaltools.ratint_ratpart | |
""" | |
if isinstance(f, tuple): | |
p, q = f | |
else: | |
p, q = f.as_numer_denom() | |
p, q = Poly(p, x, composite=False, field=True), Poly(q, x, composite=False, field=True) | |
coeff, p, q = p.cancel(q) | |
poly, p = p.div(q) | |
result = poly.integrate(x).as_expr() | |
if p.is_zero: | |
return coeff*result | |
g, h = ratint_ratpart(p, q, x) | |
P, Q = h.as_numer_denom() | |
P = Poly(P, x) | |
Q = Poly(Q, x) | |
q, r = P.div(Q) | |
result += g + q.integrate(x).as_expr() | |
if not r.is_zero: | |
symbol = flags.get('symbol', 't') | |
if not isinstance(symbol, Symbol): | |
t = Dummy(symbol) | |
else: | |
t = symbol.as_dummy() | |
L = ratint_logpart(r, Q, x, t) | |
real = flags.get('real') | |
if real is None: | |
if isinstance(f, tuple): | |
p, q = f | |
atoms = p.atoms() | q.atoms() | |
else: | |
atoms = f.atoms() | |
for elt in atoms - {x}: | |
if not elt.is_extended_real: | |
real = False | |
break | |
else: | |
real = True | |
eps = S.Zero | |
if not real: | |
for h, q in L: | |
_, h = h.primitive() | |
eps += RootSum( | |
q, Lambda(t, t*log(h.as_expr())), quadratic=True) | |
else: | |
for h, q in L: | |
_, h = h.primitive() | |
R = log_to_real(h, q, x, t) | |
if R is not None: | |
eps += R | |
else: | |
eps += RootSum( | |
q, Lambda(t, t*log(h.as_expr())), quadratic=True) | |
result += eps | |
return coeff*result | |
def ratint_ratpart(f, g, x): | |
""" | |
Horowitz-Ostrogradsky algorithm. | |
Explanation | |
=========== | |
Given a field K and polynomials f and g in K[x], such that f and g | |
are coprime and deg(f) < deg(g), returns fractions A and B in K(x), | |
such that f/g = A' + B and B has square-free denominator. | |
Examples | |
======== | |
>>> from sympy.integrals.rationaltools import ratint_ratpart | |
>>> from sympy.abc import x, y | |
>>> from sympy import Poly | |
>>> ratint_ratpart(Poly(1, x, domain='ZZ'), | |
... Poly(x + 1, x, domain='ZZ'), x) | |
(0, 1/(x + 1)) | |
>>> ratint_ratpart(Poly(1, x, domain='EX'), | |
... Poly(x**2 + y**2, x, domain='EX'), x) | |
(0, 1/(x**2 + y**2)) | |
>>> ratint_ratpart(Poly(36, x, domain='ZZ'), | |
... Poly(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x, domain='ZZ'), x) | |
((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2)) | |
See Also | |
======== | |
ratint, ratint_logpart | |
""" | |
from sympy.solvers.solvers import solve | |
f = Poly(f, x) | |
g = Poly(g, x) | |
u, v, _ = g.cofactors(g.diff()) | |
n = u.degree() | |
m = v.degree() | |
A_coeffs = [ Dummy('a' + str(n - i)) for i in range(0, n) ] | |
B_coeffs = [ Dummy('b' + str(m - i)) for i in range(0, m) ] | |
C_coeffs = A_coeffs + B_coeffs | |
A = Poly(A_coeffs, x, domain=ZZ[C_coeffs]) | |
B = Poly(B_coeffs, x, domain=ZZ[C_coeffs]) | |
H = f - A.diff()*v + A*(u.diff()*v).quo(u) - B*u | |
result = solve(H.coeffs(), C_coeffs) | |
A = A.as_expr().subs(result) | |
B = B.as_expr().subs(result) | |
rat_part = cancel(A/u.as_expr(), x) | |
log_part = cancel(B/v.as_expr(), x) | |
return rat_part, log_part | |
def ratint_logpart(f, g, x, t=None): | |
r""" | |
Lazard-Rioboo-Trager algorithm. | |
Explanation | |
=========== | |
Given a field K and polynomials f and g in K[x], such that f and g | |
are coprime, deg(f) < deg(g) and g is square-free, returns a list | |
of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i | |
in K[t, x] and q_i in K[t], and:: | |
___ ___ | |
d f d \ ` \ ` | |
-- - = -- ) ) a log(s_i(a, x)) | |
dx g dx /__, /__, | |
i=1..n a | q_i(a) = 0 | |
Examples | |
======== | |
>>> from sympy.integrals.rationaltools import ratint_logpart | |
>>> from sympy.abc import x | |
>>> from sympy import Poly | |
>>> ratint_logpart(Poly(1, x, domain='ZZ'), | |
... Poly(x**2 + x + 1, x, domain='ZZ'), x) | |
[(Poly(x + 3*_t/2 + 1/2, x, domain='QQ[_t]'), | |
...Poly(3*_t**2 + 1, _t, domain='ZZ'))] | |
>>> ratint_logpart(Poly(12, x, domain='ZZ'), | |
... Poly(x**2 - x - 2, x, domain='ZZ'), x) | |
[(Poly(x - 3*_t/8 - 1/2, x, domain='QQ[_t]'), | |
...Poly(-_t**2 + 16, _t, domain='ZZ'))] | |
See Also | |
======== | |
ratint, ratint_ratpart | |
""" | |
f, g = Poly(f, x), Poly(g, x) | |
t = t or Dummy('t') | |
a, b = g, f - g.diff()*Poly(t, x) | |
res, R = resultant(a, b, includePRS=True) | |
res = Poly(res, t, composite=False) | |
assert res, "BUG: resultant(%s, %s) cannot be zero" % (a, b) | |
R_map, H = {}, [] | |
for r in R: | |
R_map[r.degree()] = r | |
def _include_sign(c, sqf): | |
if c.is_extended_real and (c < 0) == True: | |
h, k = sqf[0] | |
c_poly = c.as_poly(h.gens) | |
sqf[0] = h*c_poly, k | |
C, res_sqf = res.sqf_list() | |
_include_sign(C, res_sqf) | |
for q, i in res_sqf: | |
_, q = q.primitive() | |
if g.degree() == i: | |
H.append((g, q)) | |
else: | |
h = R_map[i] | |
h_lc = Poly(h.LC(), t, field=True) | |
c, h_lc_sqf = h_lc.sqf_list(all=True) | |
_include_sign(c, h_lc_sqf) | |
for a, j in h_lc_sqf: | |
h = h.quo(Poly(a.gcd(q)**j, x)) | |
inv, coeffs = h_lc.invert(q), [S.One] | |
for coeff in h.coeffs()[1:]: | |
coeff = coeff.as_poly(inv.gens) | |
T = (inv*coeff).rem(q) | |
coeffs.append(T.as_expr()) | |
h = Poly(dict(list(zip(h.monoms(), coeffs))), x) | |
H.append((h, q)) | |
return H | |
def log_to_atan(f, g): | |
""" | |
Convert complex logarithms to real arctangents. | |
Explanation | |
=========== | |
Given a real field K and polynomials f and g in K[x], with g != 0, | |
returns a sum h of arctangents of polynomials in K[x], such that: | |
dh d f + I g | |
-- = -- I log( ------- ) | |
dx dx f - I g | |
Examples | |
======== | |
>>> from sympy.integrals.rationaltools import log_to_atan | |
>>> from sympy.abc import x | |
>>> from sympy import Poly, sqrt, S | |
>>> log_to_atan(Poly(x, x, domain='ZZ'), Poly(1, x, domain='ZZ')) | |
2*atan(x) | |
>>> log_to_atan(Poly(x + S(1)/2, x, domain='QQ'), | |
... Poly(sqrt(3)/2, x, domain='EX')) | |
2*atan(2*sqrt(3)*x/3 + sqrt(3)/3) | |
See Also | |
======== | |
log_to_real | |
""" | |
if f.degree() < g.degree(): | |
f, g = -g, f | |
f = f.to_field() | |
g = g.to_field() | |
p, q = f.div(g) | |
if q.is_zero: | |
return 2*atan(p.as_expr()) | |
else: | |
s, t, h = g.gcdex(-f) | |
u = (f*s + g*t).quo(h) | |
A = 2*atan(u.as_expr()) | |
return A + log_to_atan(s, t) | |
def log_to_real(h, q, x, t): | |
r""" | |
Convert complex logarithms to real functions. | |
Explanation | |
=========== | |
Given real field K and polynomials h in K[t,x] and q in K[t], | |
returns real function f such that: | |
___ | |
df d \ ` | |
-- = -- ) a log(h(a, x)) | |
dx dx /__, | |
a | q(a) = 0 | |
Examples | |
======== | |
>>> from sympy.integrals.rationaltools import log_to_real | |
>>> from sympy.abc import x, y | |
>>> from sympy import Poly, S | |
>>> log_to_real(Poly(x + 3*y/2 + S(1)/2, x, domain='QQ[y]'), | |
... Poly(3*y**2 + 1, y, domain='ZZ'), x, y) | |
2*sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3 | |
>>> log_to_real(Poly(x**2 - 1, x, domain='ZZ'), | |
... Poly(-2*y + 1, y, domain='ZZ'), x, y) | |
log(x**2 - 1)/2 | |
See Also | |
======== | |
log_to_atan | |
""" | |
from sympy.simplify.radsimp import collect | |
u, v = symbols('u,v', cls=Dummy) | |
H = h.as_expr().xreplace({t: u + I*v}).expand() | |
Q = q.as_expr().xreplace({t: u + I*v}).expand() | |
H_map = collect(H, I, evaluate=False) | |
Q_map = collect(Q, I, evaluate=False) | |
a, b = H_map.get(S.One, S.Zero), H_map.get(I, S.Zero) | |
c, d = Q_map.get(S.One, S.Zero), Q_map.get(I, S.Zero) | |
R = Poly(resultant(c, d, v), u) | |
R_u = roots(R, filter='R') | |
if len(R_u) != R.count_roots(): | |
return None | |
result = S.Zero | |
for r_u in R_u.keys(): | |
C = Poly(c.xreplace({u: r_u}), v) | |
if not C: | |
# t was split into real and imaginary parts | |
# and denom Q(u, v) = c + I*d. We just found | |
# that c(r_u) is 0 so the roots are in d | |
C = Poly(d.xreplace({u: r_u}), v) | |
# we were going to reject roots from C that | |
# did not set d to zero, but since we are now | |
# using C = d and c is already 0, there is | |
# nothing to check | |
d = S.Zero | |
R_v = roots(C, filter='R') | |
if len(R_v) != C.count_roots(): | |
return None | |
R_v_paired = [] # take one from each pair of conjugate roots | |
for r_v in R_v: | |
if r_v not in R_v_paired and -r_v not in R_v_paired: | |
if r_v.is_negative or r_v.could_extract_minus_sign(): | |
R_v_paired.append(-r_v) | |
elif not r_v.is_zero: | |
R_v_paired.append(r_v) | |
for r_v in R_v_paired: | |
D = d.xreplace({u: r_u, v: r_v}) | |
if D.evalf(chop=True) != 0: | |
continue | |
A = Poly(a.xreplace({u: r_u, v: r_v}), x) | |
B = Poly(b.xreplace({u: r_u, v: r_v}), x) | |
AB = (A**2 + B**2).as_expr() | |
result += r_u*log(AB) + r_v*log_to_atan(A, B) | |
R_q = roots(q, filter='R') | |
if len(R_q) != q.count_roots(): | |
return None | |
for r in R_q.keys(): | |
result += r*log(h.as_expr().subs(t, r)) | |
return result | |