Spaces:
Sleeping
Sleeping
# | |
# A module consisting of deprecated matrix classes. New code should not be | |
# added here. | |
# | |
from sympy.core.basic import Basic | |
from sympy.core.symbol import Dummy | |
from .common import MatrixCommon | |
from .exceptions import NonSquareMatrixError | |
from .utilities import _iszero, _is_zero_after_expand_mul, _simplify | |
from .determinant import ( | |
_find_reasonable_pivot, _find_reasonable_pivot_naive, | |
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, | |
_det, _det_bareiss, _det_berkowitz, _det_bird, _det_laplace, _det_LU, | |
_minor, _minor_submatrix) | |
from .reductions import _is_echelon, _echelon_form, _rank, _rref | |
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize | |
from .eigen import ( | |
_eigenvals, _eigenvects, | |
_bidiagonalize, _bidiagonal_decomposition, | |
_is_diagonalizable, _diagonalize, | |
_is_positive_definite, _is_positive_semidefinite, | |
_is_negative_definite, _is_negative_semidefinite, _is_indefinite, | |
_jordan_form, _left_eigenvects, _singular_values) | |
# This class was previously defined in this module, but was moved to | |
# sympy.matrices.matrixbase. We import it here for backwards compatibility in | |
# case someone was importing it from here. | |
from .matrixbase import MatrixBase | |
__doctest_requires__ = { | |
('MatrixEigen.is_indefinite', | |
'MatrixEigen.is_negative_definite', | |
'MatrixEigen.is_negative_semidefinite', | |
'MatrixEigen.is_positive_definite', | |
'MatrixEigen.is_positive_semidefinite'): ['matplotlib'], | |
} | |
class MatrixDeterminant(MatrixCommon): | |
"""Provides basic matrix determinant operations. Should not be instantiated | |
directly. See ``determinant.py`` for their implementations.""" | |
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): | |
return _det_bareiss(self, iszerofunc=iszerofunc) | |
def _eval_det_berkowitz(self): | |
return _det_berkowitz(self) | |
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): | |
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) | |
def _eval_det_bird(self): | |
return _det_bird(self) | |
def _eval_det_laplace(self): | |
return _det_laplace(self) | |
def _eval_determinant(self): # for expressions.determinant.Determinant | |
return _det(self) | |
def adjugate(self, method="berkowitz"): | |
return _adjugate(self, method=method) | |
def charpoly(self, x='lambda', simplify=_simplify): | |
return _charpoly(self, x=x, simplify=simplify) | |
def cofactor(self, i, j, method="berkowitz"): | |
return _cofactor(self, i, j, method=method) | |
def cofactor_matrix(self, method="berkowitz"): | |
return _cofactor_matrix(self, method=method) | |
def det(self, method="bareiss", iszerofunc=None): | |
return _det(self, method=method, iszerofunc=iszerofunc) | |
def per(self): | |
return _per(self) | |
def minor(self, i, j, method="berkowitz"): | |
return _minor(self, i, j, method=method) | |
def minor_submatrix(self, i, j): | |
return _minor_submatrix(self, i, j) | |
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ | |
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ | |
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__ | |
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ | |
_eval_det_bird.__doc__ = _det_bird.__doc__ | |
_eval_det_laplace.__doc__ = _det_laplace.__doc__ | |
_eval_det_lu.__doc__ = _det_LU.__doc__ | |
_eval_determinant.__doc__ = _det.__doc__ | |
adjugate.__doc__ = _adjugate.__doc__ | |
charpoly.__doc__ = _charpoly.__doc__ | |
cofactor.__doc__ = _cofactor.__doc__ | |
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ | |
det.__doc__ = _det.__doc__ | |
per.__doc__ = _per.__doc__ | |
minor.__doc__ = _minor.__doc__ | |
minor_submatrix.__doc__ = _minor_submatrix.__doc__ | |
class MatrixReductions(MatrixDeterminant): | |
"""Provides basic matrix row/column operations. Should not be instantiated | |
directly. See ``reductions.py`` for some of their implementations.""" | |
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): | |
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, | |
with_pivots=with_pivots) | |
def is_echelon(self): | |
return _is_echelon(self) | |
def rank(self, iszerofunc=_iszero, simplify=False): | |
return _rank(self, iszerofunc=iszerofunc, simplify=simplify) | |
def rref_rhs(self, rhs): | |
"""Return reduced row-echelon form of matrix, matrix showing | |
rhs after reduction steps. ``rhs`` must have the same number | |
of rows as ``self``. | |
Examples | |
======== | |
>>> from sympy import Matrix, symbols | |
>>> r1, r2 = symbols('r1 r2') | |
>>> Matrix([[1, 1], [2, 1]]).rref_rhs(Matrix([r1, r2])) | |
(Matrix([ | |
[1, 0], | |
[0, 1]]), Matrix([ | |
[ -r1 + r2], | |
[2*r1 - r2]])) | |
""" | |
r, _ = _rref(self.hstack(self, self.eye(self.rows), rhs)) | |
return r[:, :self.cols], r[:, -rhs.cols:] | |
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, | |
normalize_last=True): | |
return _rref(self, iszerofunc=iszerofunc, simplify=simplify, | |
pivots=pivots, normalize_last=normalize_last) | |
echelon_form.__doc__ = _echelon_form.__doc__ | |
is_echelon.__doc__ = _is_echelon.__doc__ | |
rank.__doc__ = _rank.__doc__ | |
rref.__doc__ = _rref.__doc__ | |
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): | |
"""Validate the arguments for a row/column operation. ``error_str`` | |
can be one of "row" or "col" depending on the arguments being parsed.""" | |
if op not in ["n->kn", "n<->m", "n->n+km"]: | |
raise ValueError("Unknown {} operation '{}'. Valid col operations " | |
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) | |
# define self_col according to error_str | |
self_cols = self.cols if error_str == 'col' else self.rows | |
# normalize and validate the arguments | |
if op == "n->kn": | |
col = col if col is not None else col1 | |
if col is None or k is None: | |
raise ValueError("For a {0} operation 'n->kn' you must provide the " | |
"kwargs `{0}` and `k`".format(error_str)) | |
if not 0 <= col < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) | |
elif op == "n<->m": | |
# we need two cols to swap. It does not matter | |
# how they were specified, so gather them together and | |
# remove `None` | |
cols = {col, k, col1, col2}.difference([None]) | |
if len(cols) > 2: | |
# maybe the user left `k` by mistake? | |
cols = {col, col1, col2}.difference([None]) | |
if len(cols) != 2: | |
raise ValueError("For a {0} operation 'n<->m' you must provide the " | |
"kwargs `{0}1` and `{0}2`".format(error_str)) | |
col1, col2 = cols | |
if not 0 <= col1 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1)) | |
if not 0 <= col2 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) | |
elif op == "n->n+km": | |
col = col1 if col is None else col | |
col2 = col1 if col2 is None else col2 | |
if col is None or col2 is None or k is None: | |
raise ValueError("For a {0} operation 'n->n+km' you must provide the " | |
"kwargs `{0}`, `k`, and `{0}2`".format(error_str)) | |
if col == col2: | |
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " | |
"be different.".format(error_str)) | |
if not 0 <= col < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) | |
if not 0 <= col2 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) | |
else: | |
raise ValueError('invalid operation %s' % repr(op)) | |
return op, col, k, col1, col2 | |
def _eval_col_op_multiply_col_by_const(self, col, k): | |
def entry(i, j): | |
if j == col: | |
return k * self[i, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_col_op_swap(self, col1, col2): | |
def entry(i, j): | |
if j == col1: | |
return self[i, col2] | |
elif j == col2: | |
return self[i, col1] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): | |
def entry(i, j): | |
if j == col: | |
return self[i, j] + k * self[i, col2] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_swap(self, row1, row2): | |
def entry(i, j): | |
if i == row1: | |
return self[row2, j] | |
elif i == row2: | |
return self[row1, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_multiply_row_by_const(self, row, k): | |
def entry(i, j): | |
if i == row: | |
return k * self[i, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): | |
def entry(i, j): | |
if i == row: | |
return self[i, j] + k * self[row2, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): | |
"""Performs the elementary column operation `op`. | |
`op` may be one of | |
* ``"n->kn"`` (column n goes to k*n) | |
* ``"n<->m"`` (swap column n and column m) | |
* ``"n->n+km"`` (column n goes to column n + k*column m) | |
Parameters | |
========== | |
op : string; the elementary row operation | |
col : the column to apply the column operation | |
k : the multiple to apply in the column operation | |
col1 : one column of a column swap | |
col2 : second column of a column swap or column "m" in the column operation | |
"n->n+km" | |
""" | |
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") | |
# now that we've validated, we're all good to dispatch | |
if op == "n->kn": | |
return self._eval_col_op_multiply_col_by_const(col, k) | |
if op == "n<->m": | |
return self._eval_col_op_swap(col1, col2) | |
if op == "n->n+km": | |
return self._eval_col_op_add_multiple_to_other_col(col, k, col2) | |
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): | |
"""Performs the elementary row operation `op`. | |
`op` may be one of | |
* ``"n->kn"`` (row n goes to k*n) | |
* ``"n<->m"`` (swap row n and row m) | |
* ``"n->n+km"`` (row n goes to row n + k*row m) | |
Parameters | |
========== | |
op : string; the elementary row operation | |
row : the row to apply the row operation | |
k : the multiple to apply in the row operation | |
row1 : one row of a row swap | |
row2 : second row of a row swap or row "m" in the row operation | |
"n->n+km" | |
""" | |
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") | |
# now that we've validated, we're all good to dispatch | |
if op == "n->kn": | |
return self._eval_row_op_multiply_row_by_const(row, k) | |
if op == "n<->m": | |
return self._eval_row_op_swap(row1, row2) | |
if op == "n->n+km": | |
return self._eval_row_op_add_multiple_to_other_row(row, k, row2) | |
class MatrixSubspaces(MatrixReductions): | |
"""Provides methods relating to the fundamental subspaces of a matrix. | |
Should not be instantiated directly. See ``subspaces.py`` for their | |
implementations.""" | |
def columnspace(self, simplify=False): | |
return _columnspace(self, simplify=simplify) | |
def nullspace(self, simplify=False, iszerofunc=_iszero): | |
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) | |
def rowspace(self, simplify=False): | |
return _rowspace(self, simplify=simplify) | |
# This is a classmethod but is converted to such later in order to allow | |
# assignment of __doc__ since that does not work for already wrapped | |
# classmethods in Python 3.6. | |
def orthogonalize(cls, *vecs, **kwargs): | |
return _orthogonalize(cls, *vecs, **kwargs) | |
columnspace.__doc__ = _columnspace.__doc__ | |
nullspace.__doc__ = _nullspace.__doc__ | |
rowspace.__doc__ = _rowspace.__doc__ | |
orthogonalize.__doc__ = _orthogonalize.__doc__ | |
orthogonalize = classmethod(orthogonalize) # type:ignore | |
class MatrixEigen(MatrixSubspaces): | |
"""Provides basic matrix eigenvalue/vector operations. | |
Should not be instantiated directly. See ``eigen.py`` for their | |
implementations.""" | |
def eigenvals(self, error_when_incomplete=True, **flags): | |
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) | |
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): | |
return _eigenvects(self, error_when_incomplete=error_when_incomplete, | |
iszerofunc=iszerofunc, **flags) | |
def is_diagonalizable(self, reals_only=False, **kwargs): | |
return _is_diagonalizable(self, reals_only=reals_only, **kwargs) | |
def diagonalize(self, reals_only=False, sort=False, normalize=False): | |
return _diagonalize(self, reals_only=reals_only, sort=sort, | |
normalize=normalize) | |
def bidiagonalize(self, upper=True): | |
return _bidiagonalize(self, upper=upper) | |
def bidiagonal_decomposition(self, upper=True): | |
return _bidiagonal_decomposition(self, upper=upper) | |
def is_positive_definite(self): | |
return _is_positive_definite(self) | |
def is_positive_semidefinite(self): | |
return _is_positive_semidefinite(self) | |
def is_negative_definite(self): | |
return _is_negative_definite(self) | |
def is_negative_semidefinite(self): | |
return _is_negative_semidefinite(self) | |
def is_indefinite(self): | |
return _is_indefinite(self) | |
def jordan_form(self, calc_transform=True, **kwargs): | |
return _jordan_form(self, calc_transform=calc_transform, **kwargs) | |
def left_eigenvects(self, **flags): | |
return _left_eigenvects(self, **flags) | |
def singular_values(self): | |
return _singular_values(self) | |
eigenvals.__doc__ = _eigenvals.__doc__ | |
eigenvects.__doc__ = _eigenvects.__doc__ | |
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ | |
diagonalize.__doc__ = _diagonalize.__doc__ | |
is_positive_definite.__doc__ = _is_positive_definite.__doc__ | |
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ | |
is_negative_definite.__doc__ = _is_negative_definite.__doc__ | |
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ | |
is_indefinite.__doc__ = _is_indefinite.__doc__ | |
jordan_form.__doc__ = _jordan_form.__doc__ | |
left_eigenvects.__doc__ = _left_eigenvects.__doc__ | |
singular_values.__doc__ = _singular_values.__doc__ | |
bidiagonalize.__doc__ = _bidiagonalize.__doc__ | |
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ | |
class MatrixCalculus(MatrixCommon): | |
"""Provides calculus-related matrix operations.""" | |
def diff(self, *args, evaluate=True, **kwargs): | |
"""Calculate the derivative of each element in the matrix. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.diff(x) | |
Matrix([ | |
[1, 0], | |
[0, 0]]) | |
See Also | |
======== | |
integrate | |
limit | |
""" | |
# XXX this should be handled here rather than in Derivative | |
from sympy.tensor.array.array_derivatives import ArrayDerivative | |
deriv = ArrayDerivative(self, *args, evaluate=evaluate) | |
# XXX This can rather changed to always return immutable matrix | |
if not isinstance(self, Basic) and evaluate: | |
return deriv.as_mutable() | |
return deriv | |
def _eval_derivative(self, arg): | |
return self.applyfunc(lambda x: x.diff(arg)) | |
def integrate(self, *args, **kwargs): | |
"""Integrate each element of the matrix. ``args`` will | |
be passed to the ``integrate`` function. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.integrate((x, )) | |
Matrix([ | |
[x**2/2, x*y], | |
[ x, 0]]) | |
>>> M.integrate((x, 0, 2)) | |
Matrix([ | |
[2, 2*y], | |
[2, 0]]) | |
See Also | |
======== | |
limit | |
diff | |
""" | |
return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) | |
def jacobian(self, X): | |
"""Calculates the Jacobian matrix (derivative of a vector-valued function). | |
Parameters | |
========== | |
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). | |
X : set of x_i's in order, it can be a list or a Matrix | |
Both ``self`` and X can be a row or a column matrix in any order | |
(i.e., jacobian() should always work). | |
Examples | |
======== | |
>>> from sympy import sin, cos, Matrix | |
>>> from sympy.abc import rho, phi | |
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) | |
>>> Y = Matrix([rho, phi]) | |
>>> X.jacobian(Y) | |
Matrix([ | |
[cos(phi), -rho*sin(phi)], | |
[sin(phi), rho*cos(phi)], | |
[ 2*rho, 0]]) | |
>>> X = Matrix([rho*cos(phi), rho*sin(phi)]) | |
>>> X.jacobian(Y) | |
Matrix([ | |
[cos(phi), -rho*sin(phi)], | |
[sin(phi), rho*cos(phi)]]) | |
See Also | |
======== | |
hessian | |
wronskian | |
""" | |
if not isinstance(X, MatrixBase): | |
X = self._new(X) | |
# Both X and ``self`` can be a row or a column matrix, so we need to make | |
# sure all valid combinations work, but everything else fails: | |
if self.shape[0] == 1: | |
m = self.shape[1] | |
elif self.shape[1] == 1: | |
m = self.shape[0] | |
else: | |
raise TypeError("``self`` must be a row or a column matrix") | |
if X.shape[0] == 1: | |
n = X.shape[1] | |
elif X.shape[1] == 1: | |
n = X.shape[0] | |
else: | |
raise TypeError("X must be a row or a column matrix") | |
# m is the number of functions and n is the number of variables | |
# computing the Jacobian is now easy: | |
return self._new(m, n, lambda j, i: self[j].diff(X[i])) | |
def limit(self, *args): | |
"""Calculate the limit of each element in the matrix. | |
``args`` will be passed to the ``limit`` function. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.limit(x, 2) | |
Matrix([ | |
[2, y], | |
[1, 0]]) | |
See Also | |
======== | |
integrate | |
diff | |
""" | |
return self.applyfunc(lambda x: x.limit(*args)) | |
# https://github.com/sympy/sympy/pull/12854 | |
class MatrixDeprecated(MatrixCommon): | |
"""A class to house deprecated matrix methods.""" | |
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): | |
return self.charpoly(x=x) | |
def berkowitz_det(self): | |
"""Computes determinant using Berkowitz method. | |
See Also | |
======== | |
det | |
berkowitz | |
""" | |
return self.det(method='berkowitz') | |
def berkowitz_eigenvals(self, **flags): | |
"""Computes eigenvalues of a Matrix using Berkowitz method. | |
See Also | |
======== | |
berkowitz | |
""" | |
return self.eigenvals(**flags) | |
def berkowitz_minors(self): | |
"""Computes principal minors using Berkowitz method. | |
See Also | |
======== | |
berkowitz | |
""" | |
sign, minors = self.one, [] | |
for poly in self.berkowitz(): | |
minors.append(sign * poly[-1]) | |
sign = -sign | |
return tuple(minors) | |
def berkowitz(self): | |
from sympy.matrices import zeros | |
berk = ((1,),) | |
if not self: | |
return berk | |
if not self.is_square: | |
raise NonSquareMatrixError() | |
A, N = self, self.rows | |
transforms = [0] * (N - 1) | |
for n in range(N, 1, -1): | |
T, k = zeros(n + 1, n), n - 1 | |
R, C = -A[k, :k], A[:k, k] | |
A, a = A[:k, :k], -A[k, k] | |
items = [C] | |
for i in range(0, n - 2): | |
items.append(A * items[i]) | |
for i, B in enumerate(items): | |
items[i] = (R * B)[0, 0] | |
items = [self.one, a] + items | |
for i in range(n): | |
T[i:, i] = items[:n - i + 1] | |
transforms[k - 1] = T | |
polys = [self._new([self.one, -A[0, 0]])] | |
for i, T in enumerate(transforms): | |
polys.append(T * polys[i]) | |
return berk + tuple(map(tuple, polys)) | |
def cofactorMatrix(self, method="berkowitz"): | |
return self.cofactor_matrix(method=method) | |
def det_bareis(self): | |
return _det_bareiss(self) | |
def det_LU_decomposition(self): | |
"""Compute matrix determinant using LU decomposition. | |
Note that this method fails if the LU decomposition itself | |
fails. In particular, if the matrix has no inverse this method | |
will fail. | |
TODO: Implement algorithm for sparse matrices (SFF), | |
https://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps | |
See Also | |
======== | |
det | |
det_bareiss | |
berkowitz_det | |
""" | |
return self.det(method='lu') | |
def jordan_cell(self, eigenval, n): | |
return self.jordan_block(size=n, eigenvalue=eigenval) | |
def jordan_cells(self, calc_transformation=True): | |
P, J = self.jordan_form() | |
return P, J.get_diag_blocks() | |
def minorEntry(self, i, j, method="berkowitz"): | |
return self.minor(i, j, method=method) | |
def minorMatrix(self, i, j): | |
return self.minor_submatrix(i, j) | |
def permuteBkwd(self, perm): | |
"""Permute the rows of the matrix with the given permutation in reverse.""" | |
return self.permute_rows(perm, direction='backward') | |
def permuteFwd(self, perm): | |
"""Permute the rows of the matrix with the given permutation.""" | |
return self.permute_rows(perm, direction='forward') | |