Spaces:
Sleeping
Sleeping
from types import FunctionType | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.polys.domains import ZZ, QQ | |
from .utilities import _get_intermediate_simp, _iszero, _dotprodsimp, _simplify | |
from .determinant import _find_reasonable_pivot | |
def _row_reduce_list(mat, rows, cols, one, iszerofunc, simpfunc, | |
normalize_last=True, normalize=True, zero_above=True): | |
"""Row reduce a flat list representation of a matrix and return a tuple | |
(rref_matrix, pivot_cols, swaps) where ``rref_matrix`` is a flat list, | |
``pivot_cols`` are the pivot columns and ``swaps`` are any row swaps that | |
were used in the process of row reduction. | |
Parameters | |
========== | |
mat : list | |
list of matrix elements, must be ``rows`` * ``cols`` in length | |
rows, cols : integer | |
number of rows and columns in flat list representation | |
one : SymPy object | |
represents the value one, from ``Matrix.one`` | |
iszerofunc : determines if an entry can be used as a pivot | |
simpfunc : used to simplify elements and test if they are | |
zero if ``iszerofunc`` returns `None` | |
normalize_last : indicates where all row reduction should | |
happen in a fraction-free manner and then the rows are | |
normalized (so that the pivots are 1), or whether | |
rows should be normalized along the way (like the naive | |
row reduction algorithm) | |
normalize : whether pivot rows should be normalized so that | |
the pivot value is 1 | |
zero_above : whether entries above the pivot should be zeroed. | |
If ``zero_above=False``, an echelon matrix will be returned. | |
""" | |
def get_col(i): | |
return mat[i::cols] | |
def row_swap(i, j): | |
mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \ | |
mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols] | |
def cross_cancel(a, i, b, j): | |
"""Does the row op row[i] = a*row[i] - b*row[j]""" | |
q = (j - i)*cols | |
for p in range(i*cols, (i + 1)*cols): | |
mat[p] = isimp(a*mat[p] - b*mat[p + q]) | |
isimp = _get_intermediate_simp(_dotprodsimp) | |
piv_row, piv_col = 0, 0 | |
pivot_cols = [] | |
swaps = [] | |
# use a fraction free method to zero above and below each pivot | |
while piv_col < cols and piv_row < rows: | |
pivot_offset, pivot_val, \ | |
assumed_nonzero, newly_determined = _find_reasonable_pivot( | |
get_col(piv_col)[piv_row:], iszerofunc, simpfunc) | |
# _find_reasonable_pivot may have simplified some things | |
# in the process. Let's not let them go to waste | |
for (offset, val) in newly_determined: | |
offset += piv_row | |
mat[offset*cols + piv_col] = val | |
if pivot_offset is None: | |
piv_col += 1 | |
continue | |
pivot_cols.append(piv_col) | |
if pivot_offset != 0: | |
row_swap(piv_row, pivot_offset + piv_row) | |
swaps.append((piv_row, pivot_offset + piv_row)) | |
# if we aren't normalizing last, we normalize | |
# before we zero the other rows | |
if normalize_last is False: | |
i, j = piv_row, piv_col | |
mat[i*cols + j] = one | |
for p in range(i*cols + j + 1, (i + 1)*cols): | |
mat[p] = isimp(mat[p] / pivot_val) | |
# after normalizing, the pivot value is 1 | |
pivot_val = one | |
# zero above and below the pivot | |
for row in range(rows): | |
# don't zero our current row | |
if row == piv_row: | |
continue | |
# don't zero above the pivot unless we're told. | |
if zero_above is False and row < piv_row: | |
continue | |
# if we're already a zero, don't do anything | |
val = mat[row*cols + piv_col] | |
if iszerofunc(val): | |
continue | |
cross_cancel(pivot_val, row, val, piv_row) | |
piv_row += 1 | |
# normalize each row | |
if normalize_last is True and normalize is True: | |
for piv_i, piv_j in enumerate(pivot_cols): | |
pivot_val = mat[piv_i*cols + piv_j] | |
mat[piv_i*cols + piv_j] = one | |
for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols): | |
mat[p] = isimp(mat[p] / pivot_val) | |
return mat, tuple(pivot_cols), tuple(swaps) | |
# This functions is a candidate for caching if it gets implemented for matrices. | |
def _row_reduce(M, iszerofunc, simpfunc, normalize_last=True, | |
normalize=True, zero_above=True): | |
mat, pivot_cols, swaps = _row_reduce_list(list(M), M.rows, M.cols, M.one, | |
iszerofunc, simpfunc, normalize_last=normalize_last, | |
normalize=normalize, zero_above=zero_above) | |
return M._new(M.rows, M.cols, mat), pivot_cols, swaps | |
def _is_echelon(M, iszerofunc=_iszero): | |
"""Returns `True` if the matrix is in echelon form. That is, all rows of | |
zeros are at the bottom, and below each leading non-zero in a row are | |
exclusively zeros.""" | |
if M.rows <= 0 or M.cols <= 0: | |
return True | |
zeros_below = all(iszerofunc(t) for t in M[1:, 0]) | |
if iszerofunc(M[0, 0]): | |
return zeros_below and _is_echelon(M[:, 1:], iszerofunc) | |
return zeros_below and _is_echelon(M[1:, 1:], iszerofunc) | |
def _echelon_form(M, iszerofunc=_iszero, simplify=False, with_pivots=False): | |
"""Returns a matrix row-equivalent to ``M`` that is in echelon form. Note | |
that echelon form of a matrix is *not* unique, however, properties like the | |
row space and the null space are preserved. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> M = Matrix([[1, 2], [3, 4]]) | |
>>> M.echelon_form() | |
Matrix([ | |
[1, 2], | |
[0, -2]]) | |
""" | |
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify | |
mat, pivots, _ = _row_reduce(M, iszerofunc, simpfunc, | |
normalize_last=True, normalize=False, zero_above=False) | |
if with_pivots: | |
return mat, pivots | |
return mat | |
# This functions is a candidate for caching if it gets implemented for matrices. | |
def _rank(M, iszerofunc=_iszero, simplify=False): | |
"""Returns the rank of a matrix. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x | |
>>> m = Matrix([[1, 2], [x, 1 - 1/x]]) | |
>>> m.rank() | |
2 | |
>>> n = Matrix(3, 3, range(1, 10)) | |
>>> n.rank() | |
2 | |
""" | |
def _permute_complexity_right(M, iszerofunc): | |
"""Permute columns with complicated elements as | |
far right as they can go. Since the ``sympy`` row reduction | |
algorithms start on the left, having complexity right-shifted | |
speeds things up. | |
Returns a tuple (mat, perm) where perm is a permutation | |
of the columns to perform to shift the complex columns right, and mat | |
is the permuted matrix.""" | |
def complexity(i): | |
# the complexity of a column will be judged by how many | |
# element's zero-ness cannot be determined | |
return sum(1 if iszerofunc(e) is None else 0 for e in M[:, i]) | |
complex = [(complexity(i), i) for i in range(M.cols)] | |
perm = [j for (i, j) in sorted(complex)] | |
return (M.permute(perm, orientation='cols'), perm) | |
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify | |
# for small matrices, we compute the rank explicitly | |
# if is_zero on elements doesn't answer the question | |
# for small matrices, we fall back to the full routine. | |
if M.rows <= 0 or M.cols <= 0: | |
return 0 | |
if M.rows <= 1 or M.cols <= 1: | |
zeros = [iszerofunc(x) for x in M] | |
if False in zeros: | |
return 1 | |
if M.rows == 2 and M.cols == 2: | |
zeros = [iszerofunc(x) for x in M] | |
if False not in zeros and None not in zeros: | |
return 0 | |
d = M.det() | |
if iszerofunc(d) and False in zeros: | |
return 1 | |
if iszerofunc(d) is False: | |
return 2 | |
mat, _ = _permute_complexity_right(M, iszerofunc=iszerofunc) | |
_, pivots, _ = _row_reduce(mat, iszerofunc, simpfunc, normalize_last=True, | |
normalize=False, zero_above=False) | |
return len(pivots) | |
def _to_DM_ZZ_QQ(M): | |
# We have to test for _rep here because there are tests that otherwise fail | |
# with e.g. "AttributeError: 'SubspaceOnlyMatrix' object has no attribute | |
# '_rep'." There is almost certainly no value in such tests. The | |
# presumption seems to be that someone could create a new class by | |
# inheriting some of the Matrix classes and not the full set that is used | |
# by the standard Matrix class but if anyone tried that it would fail in | |
# many ways. | |
if not hasattr(M, '_rep'): | |
return None | |
rep = M._rep | |
K = rep.domain | |
if K.is_ZZ: | |
return rep | |
elif K.is_QQ: | |
try: | |
return rep.convert_to(ZZ) | |
except CoercionFailed: | |
return rep | |
else: | |
if not all(e.is_Rational for e in M): | |
return None | |
try: | |
return rep.convert_to(ZZ) | |
except CoercionFailed: | |
return rep.convert_to(QQ) | |
def _rref_dm(dM): | |
"""Compute the reduced row echelon form of a DomainMatrix.""" | |
K = dM.domain | |
if K.is_ZZ: | |
dM_rref, den, pivots = dM.rref_den(keep_domain=False) | |
dM_rref = dM_rref.to_field() / den | |
elif K.is_QQ: | |
dM_rref, pivots = dM.rref() | |
else: | |
assert False # pragma: no cover | |
M_rref = dM_rref.to_Matrix() | |
return M_rref, pivots | |
def _rref(M, iszerofunc=_iszero, simplify=False, pivots=True, | |
normalize_last=True): | |
"""Return reduced row-echelon form of matrix and indices | |
of pivot vars. | |
Parameters | |
========== | |
iszerofunc : Function | |
A function used for detecting whether an element can | |
act as a pivot. ``lambda x: x.is_zero`` is used by default. | |
simplify : Function | |
A function used to simplify elements when looking for a pivot. | |
By default SymPy's ``simplify`` is used. | |
pivots : True or False | |
If ``True``, a tuple containing the row-reduced matrix and a tuple | |
of pivot columns is returned. If ``False`` just the row-reduced | |
matrix is returned. | |
normalize_last : True or False | |
If ``True``, no pivots are normalized to `1` until after all | |
entries above and below each pivot are zeroed. This means the row | |
reduction algorithm is fraction free until the very last step. | |
If ``False``, the naive row reduction procedure is used where | |
each pivot is normalized to be `1` before row operations are | |
used to zero above and below the pivot. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x | |
>>> m = Matrix([[1, 2], [x, 1 - 1/x]]) | |
>>> m.rref() | |
(Matrix([ | |
[1, 0], | |
[0, 1]]), (0, 1)) | |
>>> rref_matrix, rref_pivots = m.rref() | |
>>> rref_matrix | |
Matrix([ | |
[1, 0], | |
[0, 1]]) | |
>>> rref_pivots | |
(0, 1) | |
``iszerofunc`` can correct rounding errors in matrices with float | |
values. In the following example, calling ``rref()`` leads to | |
floating point errors, incorrectly row reducing the matrix. | |
``iszerofunc= lambda x: abs(x) < 1e-9`` sets sufficiently small numbers | |
to zero, avoiding this error. | |
>>> m = Matrix([[0.9, -0.1, -0.2, 0], [-0.8, 0.9, -0.4, 0], [-0.1, -0.8, 0.6, 0]]) | |
>>> m.rref() | |
(Matrix([ | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0]]), (0, 1, 2)) | |
>>> m.rref(iszerofunc=lambda x:abs(x)<1e-9) | |
(Matrix([ | |
[1, 0, -0.301369863013699, 0], | |
[0, 1, -0.712328767123288, 0], | |
[0, 0, 0, 0]]), (0, 1)) | |
Notes | |
===== | |
The default value of ``normalize_last=True`` can provide significant | |
speedup to row reduction, especially on matrices with symbols. However, | |
if you depend on the form row reduction algorithm leaves entries | |
of the matrix, set ``normalize_last=False`` | |
""" | |
# Try to use DomainMatrix for ZZ or QQ | |
dM = _to_DM_ZZ_QQ(M) | |
if dM is not None: | |
# Use DomainMatrix for ZZ or QQ | |
mat, pivot_cols = _rref_dm(dM) | |
else: | |
# Use the generic Matrix routine. | |
if isinstance(simplify, FunctionType): | |
simpfunc = simplify | |
else: | |
simpfunc = _simplify | |
mat, pivot_cols, _ = _row_reduce(M, iszerofunc, simpfunc, | |
normalize_last, normalize=True, zero_above=True) | |
if pivots: | |
return mat, pivot_cols | |
else: | |
return mat | |