Spaces:
Sleeping
Sleeping
from sympy.core.containers import Dict | |
from sympy.core.symbol import Dummy | |
from sympy.utilities.iterables import is_sequence | |
from sympy.utilities.misc import as_int, filldedent | |
from .sparse import MutableSparseMatrix as SparseMatrix | |
def _doktocsr(dok): | |
"""Converts a sparse matrix to Compressed Sparse Row (CSR) format. | |
Parameters | |
========== | |
A : contains non-zero elements sorted by key (row, column) | |
JA : JA[i] is the column corresponding to A[i] | |
IA : IA[i] contains the index in A for the first non-zero element | |
of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero | |
elements row[i]. The length of IA is always 1 more than the | |
number of rows in the matrix. | |
Examples | |
======== | |
>>> from sympy.matrices.sparsetools import _doktocsr | |
>>> from sympy import SparseMatrix, diag | |
>>> m = SparseMatrix(diag(1, 2, 3)) | |
>>> m[2, 0] = -1 | |
>>> _doktocsr(m) | |
[[1, 2, -1, 3], [0, 1, 0, 2], [0, 1, 2, 4], [3, 3]] | |
""" | |
row, JA, A = [list(i) for i in zip(*dok.row_list())] | |
IA = [0]*((row[0] if row else 0) + 1) | |
for i, r in enumerate(row): | |
IA.extend([i]*(r - row[i - 1])) # if i = 0 nothing is extended | |
IA.extend([len(A)]*(dok.rows - len(IA) + 1)) | |
shape = [dok.rows, dok.cols] | |
return [A, JA, IA, shape] | |
def _csrtodok(csr): | |
"""Converts a CSR representation to DOK representation. | |
Examples | |
======== | |
>>> from sympy.matrices.sparsetools import _csrtodok | |
>>> _csrtodok([[5, 8, 3, 6], [0, 1, 2, 1], [0, 0, 2, 3, 4], [4, 3]]) | |
Matrix([ | |
[0, 0, 0], | |
[5, 8, 0], | |
[0, 0, 3], | |
[0, 6, 0]]) | |
""" | |
smat = {} | |
A, JA, IA, shape = csr | |
for i in range(len(IA) - 1): | |
indices = slice(IA[i], IA[i + 1]) | |
for l, m in zip(A[indices], JA[indices]): | |
smat[i, m] = l | |
return SparseMatrix(*shape, smat) | |
def banded(*args, **kwargs): | |
"""Returns a SparseMatrix from the given dictionary describing | |
the diagonals of the matrix. The keys are positive for upper | |
diagonals and negative for those below the main diagonal. The | |
values may be: | |
* expressions or single-argument functions, | |
* lists or tuples of values, | |
* matrices | |
Unless dimensions are given, the size of the returned matrix will | |
be large enough to contain the largest non-zero value provided. | |
kwargs | |
====== | |
rows : rows of the resulting matrix; computed if | |
not given. | |
cols : columns of the resulting matrix; computed if | |
not given. | |
Examples | |
======== | |
>>> from sympy import banded, ones, Matrix | |
>>> from sympy.abc import x | |
If explicit values are given in tuples, | |
the matrix will autosize to contain all values, otherwise | |
a single value is filled onto the entire diagonal: | |
>>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x}) | |
Matrix([ | |
[x, 1, 0, 0], | |
[4, x, 2, 0], | |
[0, 5, x, 3], | |
[0, 0, 6, x]]) | |
A function accepting a single argument can be used to fill the | |
diagonal as a function of diagonal index (which starts at 0). | |
The size (or shape) of the matrix must be given to obtain more | |
than a 1x1 matrix: | |
>>> s = lambda d: (1 + d)**2 | |
>>> banded(5, {0: s, 2: s, -2: 2}) | |
Matrix([ | |
[1, 0, 1, 0, 0], | |
[0, 4, 0, 4, 0], | |
[2, 0, 9, 0, 9], | |
[0, 2, 0, 16, 0], | |
[0, 0, 2, 0, 25]]) | |
The diagonal of matrices placed on a diagonal will coincide | |
with the indicated diagonal: | |
>>> vert = Matrix([1, 2, 3]) | |
>>> banded({0: vert}, cols=3) | |
Matrix([ | |
[1, 0, 0], | |
[2, 1, 0], | |
[3, 2, 1], | |
[0, 3, 2], | |
[0, 0, 3]]) | |
>>> banded(4, {0: ones(2)}) | |
Matrix([ | |
[1, 1, 0, 0], | |
[1, 1, 0, 0], | |
[0, 0, 1, 1], | |
[0, 0, 1, 1]]) | |
Errors are raised if the designated size will not hold | |
all values an integral number of times. Here, the rows | |
are designated as odd (but an even number is required to | |
hold the off-diagonal 2x2 ones): | |
>>> banded({0: 2, 1: ones(2)}, rows=5) | |
Traceback (most recent call last): | |
... | |
ValueError: | |
sequence does not fit an integral number of times in the matrix | |
And here, an even number of rows is given...but the square | |
matrix has an even number of columns, too. As we saw | |
in the previous example, an odd number is required: | |
>>> banded(4, {0: 2, 1: ones(2)}) # trying to make 4x4 and cols must be odd | |
Traceback (most recent call last): | |
... | |
ValueError: | |
sequence does not fit an integral number of times in the matrix | |
A way around having to count rows is to enclosing matrix elements | |
in a tuple and indicate the desired number of them to the right: | |
>>> banded({0: 2, 2: (ones(2),)*3}) | |
Matrix([ | |
[2, 0, 1, 1, 0, 0, 0, 0], | |
[0, 2, 1, 1, 0, 0, 0, 0], | |
[0, 0, 2, 0, 1, 1, 0, 0], | |
[0, 0, 0, 2, 1, 1, 0, 0], | |
[0, 0, 0, 0, 2, 0, 1, 1], | |
[0, 0, 0, 0, 0, 2, 1, 1]]) | |
An error will be raised if more than one value | |
is written to a given entry. Here, the ones overlap | |
with the main diagonal if they are placed on the | |
first diagonal: | |
>>> banded({0: (2,)*5, 1: (ones(2),)*3}) | |
Traceback (most recent call last): | |
... | |
ValueError: collision at (1, 1) | |
By placing a 0 at the bottom left of the 2x2 matrix of | |
ones, the collision is avoided: | |
>>> u2 = Matrix([ | |
... [1, 1], | |
... [0, 1]]) | |
>>> banded({0: [2]*5, 1: [u2]*3}) | |
Matrix([ | |
[2, 1, 1, 0, 0, 0, 0], | |
[0, 2, 1, 0, 0, 0, 0], | |
[0, 0, 2, 1, 1, 0, 0], | |
[0, 0, 0, 2, 1, 0, 0], | |
[0, 0, 0, 0, 2, 1, 1], | |
[0, 0, 0, 0, 0, 0, 1]]) | |
""" | |
try: | |
if len(args) not in (1, 2, 3): | |
raise TypeError | |
if not isinstance(args[-1], (dict, Dict)): | |
raise TypeError | |
if len(args) == 1: | |
rows = kwargs.get('rows', None) | |
cols = kwargs.get('cols', None) | |
if rows is not None: | |
rows = as_int(rows) | |
if cols is not None: | |
cols = as_int(cols) | |
elif len(args) == 2: | |
rows = cols = as_int(args[0]) | |
else: | |
rows, cols = map(as_int, args[:2]) | |
# fails with ValueError if any keys are not ints | |
_ = all(as_int(k) for k in args[-1]) | |
except (ValueError, TypeError): | |
raise TypeError(filldedent( | |
'''unrecognized input to banded: | |
expecting [[row,] col,] {int: value}''')) | |
def rc(d): | |
# return row,col coord of diagonal start | |
r = -d if d < 0 else 0 | |
c = 0 if r else d | |
return r, c | |
smat = {} | |
undone = [] | |
tba = Dummy() | |
# first handle objects with size | |
for d, v in args[-1].items(): | |
r, c = rc(d) | |
# note: only list and tuple are recognized since this | |
# will allow other Basic objects like Tuple | |
# into the matrix if so desired | |
if isinstance(v, (list, tuple)): | |
extra = 0 | |
for i, vi in enumerate(v): | |
i += extra | |
if is_sequence(vi): | |
vi = SparseMatrix(vi) | |
smat[r + i, c + i] = vi | |
extra += min(vi.shape) - 1 | |
else: | |
smat[r + i, c + i] = vi | |
elif is_sequence(v): | |
v = SparseMatrix(v) | |
rv, cv = v.shape | |
if rows and cols: | |
nr, xr = divmod(rows - r, rv) | |
nc, xc = divmod(cols - c, cv) | |
x = xr or xc | |
do = min(nr, nc) | |
elif rows: | |
do, x = divmod(rows - r, rv) | |
elif cols: | |
do, x = divmod(cols - c, cv) | |
else: | |
do = 1 | |
x = 0 | |
if x: | |
raise ValueError(filldedent(''' | |
sequence does not fit an integral number of times | |
in the matrix''')) | |
j = min(v.shape) | |
for i in range(do): | |
smat[r, c] = v | |
r += j | |
c += j | |
elif v: | |
smat[r, c] = tba | |
undone.append((d, v)) | |
s = SparseMatrix(None, smat) # to expand matrices | |
smat = s.todok() | |
# check for dim errors here | |
if rows is not None and rows < s.rows: | |
raise ValueError('Designated rows %s < needed %s' % (rows, s.rows)) | |
if cols is not None and cols < s.cols: | |
raise ValueError('Designated cols %s < needed %s' % (cols, s.cols)) | |
if rows is cols is None: | |
rows = s.rows | |
cols = s.cols | |
elif rows is not None and cols is None: | |
cols = max(rows, s.cols) | |
elif cols is not None and rows is None: | |
rows = max(cols, s.rows) | |
def update(i, j, v): | |
# update smat and make sure there are | |
# no collisions | |
if v: | |
if (i, j) in smat and smat[i, j] not in (tba, v): | |
raise ValueError('collision at %s' % ((i, j),)) | |
smat[i, j] = v | |
if undone: | |
for d, vi in undone: | |
r, c = rc(d) | |
v = vi if callable(vi) else lambda _: vi | |
i = 0 | |
while r + i < rows and c + i < cols: | |
update(r + i, c + i, v(i)) | |
i += 1 | |
return SparseMatrix(rows, cols, smat) | |