Spaces:
Sleeping
Sleeping
import pytest | |
from sympy.core.function import expand_mul | |
from sympy.core.numbers import (I, Rational) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.core.sympify import sympify | |
from sympy.simplify.simplify import simplify | |
from sympy.matrices.exceptions import (ShapeError, NonSquareMatrixError) | |
from sympy.matrices import ( | |
ImmutableMatrix, Matrix, eye, ones, ImmutableDenseMatrix, dotprodsimp) | |
from sympy.matrices.determinant import _det_laplace | |
from sympy.testing.pytest import raises | |
from sympy.matrices.exceptions import NonInvertibleMatrixError | |
from sympy.polys.matrices.exceptions import DMShapeError | |
from sympy.solvers.solveset import linsolve | |
from sympy.abc import x, y | |
def test_issue_17247_expression_blowup_29(): | |
M = Matrix(S('''[ | |
[ -3/4, 45/32 - 37*I/16, 0, 0], | |
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], | |
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], | |
[ 0, 0, 0, -177/128 - 1369*I/128]]''')) | |
with dotprodsimp(True): | |
assert M.gauss_jordan_solve(ones(4, 1)) == (Matrix(S('''[ | |
[ -32549314808672/3306971225785 - 17397006745216*I/3306971225785], | |
[ 67439348256/3306971225785 - 9167503335872*I/3306971225785], | |
[-15091965363354518272/21217636514687010905 + 16890163109293858304*I/21217636514687010905], | |
[ -11328/952745 + 87616*I/952745]]''')), Matrix(0, 1, [])) | |
def test_issue_17247_expression_blowup_30(): | |
M = Matrix(S('''[ | |
[ -3/4, 45/32 - 37*I/16, 0, 0], | |
[-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], | |
[ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], | |
[ 0, 0, 0, -177/128 - 1369*I/128]]''')) | |
with dotprodsimp(True): | |
assert M.cholesky_solve(ones(4, 1)) == Matrix(S('''[ | |
[ -32549314808672/3306971225785 - 17397006745216*I/3306971225785], | |
[ 67439348256/3306971225785 - 9167503335872*I/3306971225785], | |
[-15091965363354518272/21217636514687010905 + 16890163109293858304*I/21217636514687010905], | |
[ -11328/952745 + 87616*I/952745]]''')) | |
# @XFAIL # This calculation hangs with dotprodsimp. | |
# def test_issue_17247_expression_blowup_31(): | |
# M = Matrix([ | |
# [x + 1, 1 - x, 0, 0], | |
# [1 - x, x + 1, 0, x + 1], | |
# [ 0, 1 - x, x + 1, 0], | |
# [ 0, 0, 0, x + 1]]) | |
# with dotprodsimp(True): | |
# assert M.LDLsolve(ones(4, 1)) == Matrix([ | |
# [(x + 1)/(4*x)], | |
# [(x - 1)/(4*x)], | |
# [(x + 1)/(4*x)], | |
# [ 1/(x + 1)]]) | |
def test_LUsolve_iszerofunc(): | |
# taken from https://github.com/sympy/sympy/issues/24679 | |
M = Matrix([[(x + 1)**2 - (x**2 + 2*x + 1), x], [x, 0]]) | |
b = Matrix([1, 1]) | |
is_zero_func = lambda e: False if e._random() else True | |
x_exp = Matrix([1/x, (1-(-x**2 - 2*x + (x+1)**2 - 1)/x)/x]) | |
assert (x_exp - M.LUsolve(b, iszerofunc=is_zero_func)) == Matrix([0, 0]) | |
def test_issue_17247_expression_blowup_32(): | |
M = Matrix([ | |
[x + 1, 1 - x, 0, 0], | |
[1 - x, x + 1, 0, x + 1], | |
[ 0, 1 - x, x + 1, 0], | |
[ 0, 0, 0, x + 1]]) | |
with dotprodsimp(True): | |
assert M.LUsolve(ones(4, 1)) == Matrix([ | |
[(x + 1)/(4*x)], | |
[(x - 1)/(4*x)], | |
[(x + 1)/(4*x)], | |
[ 1/(x + 1)]]) | |
def test_LUsolve(): | |
A = Matrix([[2, 3, 5], | |
[3, 6, 2], | |
[8, 3, 6]]) | |
x = Matrix(3, 1, [3, 7, 5]) | |
b = A*x | |
soln = A.LUsolve(b) | |
assert soln == x | |
A = Matrix([[0, -1, 2], | |
[5, 10, 7], | |
[8, 3, 4]]) | |
x = Matrix(3, 1, [-1, 2, 5]) | |
b = A*x | |
soln = A.LUsolve(b) | |
assert soln == x | |
A = Matrix([[2, 1], [1, 0], [1, 0]]) # issue 14548 | |
b = Matrix([3, 1, 1]) | |
assert A.LUsolve(b) == Matrix([1, 1]) | |
b = Matrix([3, 1, 2]) # inconsistent | |
raises(ValueError, lambda: A.LUsolve(b)) | |
A = Matrix([[0, -1, 2], | |
[5, 10, 7], | |
[8, 3, 4], | |
[2, 3, 5], | |
[3, 6, 2], | |
[8, 3, 6]]) | |
x = Matrix([2, 1, -4]) | |
b = A*x | |
soln = A.LUsolve(b) | |
assert soln == x | |
A = Matrix([[0, -1, 2], [5, 10, 7]]) # underdetermined | |
x = Matrix([-1, 2, 0]) | |
b = A*x | |
raises(NotImplementedError, lambda: A.LUsolve(b)) | |
A = Matrix(4, 4, lambda i, j: 1/(i+j+1) if i != 3 else 0) | |
b = Matrix.zeros(4, 1) | |
raises(NonInvertibleMatrixError, lambda: A.LUsolve(b)) | |
def test_QRsolve(): | |
A = Matrix([[2, 3, 5], | |
[3, 6, 2], | |
[8, 3, 6]]) | |
x = Matrix(3, 1, [3, 7, 5]) | |
b = A*x | |
soln = A.QRsolve(b) | |
assert soln == x | |
x = Matrix([[1, 2], [3, 4], [5, 6]]) | |
b = A*x | |
soln = A.QRsolve(b) | |
assert soln == x | |
A = Matrix([[0, -1, 2], | |
[5, 10, 7], | |
[8, 3, 4]]) | |
x = Matrix(3, 1, [-1, 2, 5]) | |
b = A*x | |
soln = A.QRsolve(b) | |
assert soln == x | |
x = Matrix([[7, 8], [9, 10], [11, 12]]) | |
b = A*x | |
soln = A.QRsolve(b) | |
assert soln == x | |
def test_errors(): | |
raises(ShapeError, lambda: Matrix([1]).LUsolve(Matrix([[1, 2], [3, 4]]))) | |
def test_cholesky_solve(): | |
A = Matrix([[2, 3, 5], | |
[3, 6, 2], | |
[8, 3, 6]]) | |
x = Matrix(3, 1, [3, 7, 5]) | |
b = A*x | |
soln = A.cholesky_solve(b) | |
assert soln == x | |
A = Matrix([[0, -1, 2], | |
[5, 10, 7], | |
[8, 3, 4]]) | |
x = Matrix(3, 1, [-1, 2, 5]) | |
b = A*x | |
soln = A.cholesky_solve(b) | |
assert soln == x | |
A = Matrix(((1, 5), (5, 1))) | |
x = Matrix((4, -3)) | |
b = A*x | |
soln = A.cholesky_solve(b) | |
assert soln == x | |
A = Matrix(((9, 3*I), (-3*I, 5))) | |
x = Matrix((-2, 1)) | |
b = A*x | |
soln = A.cholesky_solve(b) | |
assert expand_mul(soln) == x | |
A = Matrix(((9*I, 3), (-3 + I, 5))) | |
x = Matrix((2 + 3*I, -1)) | |
b = A*x | |
soln = A.cholesky_solve(b) | |
assert expand_mul(soln) == x | |
a00, a01, a11, b0, b1 = symbols('a00, a01, a11, b0, b1') | |
A = Matrix(((a00, a01), (a01, a11))) | |
b = Matrix((b0, b1)) | |
x = A.cholesky_solve(b) | |
assert simplify(A*x) == b | |
def test_LDLsolve(): | |
A = Matrix([[2, 3, 5], | |
[3, 6, 2], | |
[8, 3, 6]]) | |
x = Matrix(3, 1, [3, 7, 5]) | |
b = A*x | |
soln = A.LDLsolve(b) | |
assert soln == x | |
A = Matrix([[0, -1, 2], | |
[5, 10, 7], | |
[8, 3, 4]]) | |
x = Matrix(3, 1, [-1, 2, 5]) | |
b = A*x | |
soln = A.LDLsolve(b) | |
assert soln == x | |
A = Matrix(((9, 3*I), (-3*I, 5))) | |
x = Matrix((-2, 1)) | |
b = A*x | |
soln = A.LDLsolve(b) | |
assert expand_mul(soln) == x | |
A = Matrix(((9*I, 3), (-3 + I, 5))) | |
x = Matrix((2 + 3*I, -1)) | |
b = A*x | |
soln = A.LDLsolve(b) | |
assert expand_mul(soln) == x | |
A = Matrix(((9, 3), (3, 9))) | |
x = Matrix((1, 1)) | |
b = A * x | |
soln = A.LDLsolve(b) | |
assert expand_mul(soln) == x | |
A = Matrix([[-5, -3, -4], [-3, -7, 7]]) | |
x = Matrix([[8], [7], [-2]]) | |
b = A * x | |
raises(NotImplementedError, lambda: A.LDLsolve(b)) | |
def test_lower_triangular_solve(): | |
raises(NonSquareMatrixError, | |
lambda: Matrix([1, 0]).lower_triangular_solve(Matrix([0, 1]))) | |
raises(ShapeError, | |
lambda: Matrix([[1, 0], [0, 1]]).lower_triangular_solve(Matrix([1]))) | |
raises(ValueError, | |
lambda: Matrix([[2, 1], [1, 2]]).lower_triangular_solve( | |
Matrix([[1, 0], [0, 1]]))) | |
A = Matrix([[1, 0], [0, 1]]) | |
B = Matrix([[x, y], [y, x]]) | |
C = Matrix([[4, 8], [2, 9]]) | |
assert A.lower_triangular_solve(B) == B | |
assert A.lower_triangular_solve(C) == C | |
def test_upper_triangular_solve(): | |
raises(NonSquareMatrixError, | |
lambda: Matrix([1, 0]).upper_triangular_solve(Matrix([0, 1]))) | |
raises(ShapeError, | |
lambda: Matrix([[1, 0], [0, 1]]).upper_triangular_solve(Matrix([1]))) | |
raises(TypeError, | |
lambda: Matrix([[2, 1], [1, 2]]).upper_triangular_solve( | |
Matrix([[1, 0], [0, 1]]))) | |
A = Matrix([[1, 0], [0, 1]]) | |
B = Matrix([[x, y], [y, x]]) | |
C = Matrix([[2, 4], [3, 8]]) | |
assert A.upper_triangular_solve(B) == B | |
assert A.upper_triangular_solve(C) == C | |
def test_diagonal_solve(): | |
raises(TypeError, lambda: Matrix([1, 1]).diagonal_solve(Matrix([1]))) | |
A = Matrix([[1, 0], [0, 1]])*2 | |
B = Matrix([[x, y], [y, x]]) | |
assert A.diagonal_solve(B) == B/2 | |
A = Matrix([[1, 0], [1, 2]]) | |
raises(TypeError, lambda: A.diagonal_solve(B)) | |
def test_pinv_solve(): | |
# Fully determined system (unique result, identical to other solvers). | |
A = Matrix([[1, 5], [7, 9]]) | |
B = Matrix([12, 13]) | |
assert A.pinv_solve(B) == A.cholesky_solve(B) | |
assert A.pinv_solve(B) == A.LDLsolve(B) | |
assert A.pinv_solve(B) == Matrix([sympify('-43/26'), sympify('71/26')]) | |
assert A * A.pinv() * B == B | |
# Fully determined, with two-dimensional B matrix. | |
B = Matrix([[12, 13, 14], [15, 16, 17]]) | |
assert A.pinv_solve(B) == A.cholesky_solve(B) | |
assert A.pinv_solve(B) == A.LDLsolve(B) | |
assert A.pinv_solve(B) == Matrix([[-33, -37, -41], [69, 75, 81]]) / 26 | |
assert A * A.pinv() * B == B | |
# Underdetermined system (infinite results). | |
A = Matrix([[1, 0, 1], [0, 1, 1]]) | |
B = Matrix([5, 7]) | |
solution = A.pinv_solve(B) | |
w = {} | |
for s in solution.atoms(Symbol): | |
# Extract dummy symbols used in the solution. | |
w[s.name] = s | |
assert solution == Matrix([[w['w0_0']/3 + w['w1_0']/3 - w['w2_0']/3 + 1], | |
[w['w0_0']/3 + w['w1_0']/3 - w['w2_0']/3 + 3], | |
[-w['w0_0']/3 - w['w1_0']/3 + w['w2_0']/3 + 4]]) | |
assert A * A.pinv() * B == B | |
# Overdetermined system (least squares results). | |
A = Matrix([[1, 0], [0, 0], [0, 1]]) | |
B = Matrix([3, 2, 1]) | |
assert A.pinv_solve(B) == Matrix([3, 1]) | |
# Proof the solution is not exact. | |
assert A * A.pinv() * B != B | |
def test_pinv_rank_deficient(): | |
# Test the four properties of the pseudoinverse for various matrices. | |
As = [Matrix([[1, 1, 1], [2, 2, 2]]), | |
Matrix([[1, 0], [0, 0]]), | |
Matrix([[1, 2], [2, 4], [3, 6]])] | |
for A in As: | |
A_pinv = A.pinv(method="RD") | |
AAp = A * A_pinv | |
ApA = A_pinv * A | |
assert simplify(AAp * A) == A | |
assert simplify(ApA * A_pinv) == A_pinv | |
assert AAp.H == AAp | |
assert ApA.H == ApA | |
for A in As: | |
A_pinv = A.pinv(method="ED") | |
AAp = A * A_pinv | |
ApA = A_pinv * A | |
assert simplify(AAp * A) == A | |
assert simplify(ApA * A_pinv) == A_pinv | |
assert AAp.H == AAp | |
assert ApA.H == ApA | |
# Test solving with rank-deficient matrices. | |
A = Matrix([[1, 0], [0, 0]]) | |
# Exact, non-unique solution. | |
B = Matrix([3, 0]) | |
solution = A.pinv_solve(B) | |
w1 = solution.atoms(Symbol).pop() | |
assert w1.name == 'w1_0' | |
assert solution == Matrix([3, w1]) | |
assert A * A.pinv() * B == B | |
# Least squares, non-unique solution. | |
B = Matrix([3, 1]) | |
solution = A.pinv_solve(B) | |
w1 = solution.atoms(Symbol).pop() | |
assert w1.name == 'w1_0' | |
assert solution == Matrix([3, w1]) | |
assert A * A.pinv() * B != B | |
def test_gauss_jordan_solve(): | |
# Square, full rank, unique solution | |
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) | |
b = Matrix([3, 6, 9]) | |
sol, params = A.gauss_jordan_solve(b) | |
assert sol == Matrix([[-1], [2], [0]]) | |
assert params == Matrix(0, 1, []) | |
# Square, full rank, unique solution, B has more columns than rows | |
A = eye(3) | |
B = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) | |
sol, params = A.gauss_jordan_solve(B) | |
assert sol == B | |
assert params == Matrix(0, 4, []) | |
# Square, reduced rank, parametrized solution | |
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
b = Matrix([3, 6, 9]) | |
sol, params, freevar = A.gauss_jordan_solve(b, freevar=True) | |
w = {} | |
for s in sol.atoms(Symbol): | |
# Extract dummy symbols used in the solution. | |
w[s.name] = s | |
assert sol == Matrix([[w['tau0'] - 1], [-2*w['tau0'] + 2], [w['tau0']]]) | |
assert params == Matrix([[w['tau0']]]) | |
assert freevar == [2] | |
# Square, reduced rank, parametrized solution, B has two columns | |
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
B = Matrix([[3, 4], [6, 8], [9, 12]]) | |
sol, params, freevar = A.gauss_jordan_solve(B, freevar=True) | |
w = {} | |
for s in sol.atoms(Symbol): | |
# Extract dummy symbols used in the solution. | |
w[s.name] = s | |
assert sol == Matrix([[w['tau0'] - 1, w['tau1'] - Rational(4, 3)], | |
[-2*w['tau0'] + 2, -2*w['tau1'] + Rational(8, 3)], | |
[w['tau0'], w['tau1']],]) | |
assert params == Matrix([[w['tau0'], w['tau1']]]) | |
assert freevar == [2] | |
# Square, reduced rank, parametrized solution | |
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) | |
b = Matrix([0, 0, 0]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[-2*w['tau0'] - 3*w['tau1']], | |
[w['tau0']], [w['tau1']]]) | |
assert params == Matrix([[w['tau0']], [w['tau1']]]) | |
# Square, reduced rank, parametrized solution | |
A = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
b = Matrix([0, 0, 0]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[w['tau0']], [w['tau1']], [w['tau2']]]) | |
assert params == Matrix([[w['tau0']], [w['tau1']], [w['tau2']]]) | |
# Square, reduced rank, no solution | |
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) | |
b = Matrix([0, 0, 1]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(b)) | |
# Rectangular, tall, full rank, unique solution | |
A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) | |
b = Matrix([0, 0, 1, 0]) | |
sol, params = A.gauss_jordan_solve(b) | |
assert sol == Matrix([[Rational(-1, 2)], [0], [Rational(1, 6)]]) | |
assert params == Matrix(0, 1, []) | |
# Rectangular, tall, full rank, unique solution, B has less columns than rows | |
A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) | |
B = Matrix([[0,0], [0, 0], [1, 2], [0, 0]]) | |
sol, params = A.gauss_jordan_solve(B) | |
assert sol == Matrix([[Rational(-1, 2), Rational(-2, 2)], [0, 0], [Rational(1, 6), Rational(2, 6)]]) | |
assert params == Matrix(0, 2, []) | |
# Rectangular, tall, full rank, no solution | |
A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) | |
b = Matrix([0, 0, 0, 1]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(b)) | |
# Rectangular, tall, full rank, no solution, B has two columns (2nd has no solution) | |
A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) | |
B = Matrix([[0,0], [0, 0], [1, 0], [0, 1]]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(B)) | |
# Rectangular, tall, full rank, no solution, B has two columns (1st has no solution) | |
A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) | |
B = Matrix([[0,0], [0, 0], [0, 1], [1, 0]]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(B)) | |
# Rectangular, tall, reduced rank, parametrized solution | |
A = Matrix([[1, 5, 3], [2, 10, 6], [3, 15, 9], [1, 4, 3]]) | |
b = Matrix([0, 0, 0, 1]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[-3*w['tau0'] + 5], [-1], [w['tau0']]]) | |
assert params == Matrix([[w['tau0']]]) | |
# Rectangular, tall, reduced rank, no solution | |
A = Matrix([[1, 5, 3], [2, 10, 6], [3, 15, 9], [1, 4, 3]]) | |
b = Matrix([0, 0, 1, 1]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(b)) | |
# Rectangular, wide, full rank, parametrized solution | |
A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 1, 12]]) | |
b = Matrix([1, 1, 1]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[2*w['tau0'] - 1], [-3*w['tau0'] + 1], [0], | |
[w['tau0']]]) | |
assert params == Matrix([[w['tau0']]]) | |
# Rectangular, wide, reduced rank, parametrized solution | |
A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]) | |
b = Matrix([0, 1, 0]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[w['tau0'] + 2*w['tau1'] + S.Half], | |
[-2*w['tau0'] - 3*w['tau1'] - Rational(1, 4)], | |
[w['tau0']], [w['tau1']]]) | |
assert params == Matrix([[w['tau0']], [w['tau1']]]) | |
# watch out for clashing symbols | |
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1') | |
M = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) | |
A = M[:, :-1] | |
b = M[:, -1:] | |
sol, params = A.gauss_jordan_solve(b) | |
assert params == Matrix(3, 1, [x0, x1, x2]) | |
assert sol == Matrix(5, 1, [x0, 0, x1, _x0, x2]) | |
# Rectangular, wide, reduced rank, no solution | |
A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]) | |
b = Matrix([1, 1, 1]) | |
raises(ValueError, lambda: A.gauss_jordan_solve(b)) | |
# Test for immutable matrix | |
A = ImmutableMatrix([[1, 0], [0, 1]]) | |
B = ImmutableMatrix([1, 2]) | |
sol, params = A.gauss_jordan_solve(B) | |
assert sol == ImmutableMatrix([1, 2]) | |
assert params == ImmutableMatrix(0, 1, []) | |
assert sol.__class__ == ImmutableDenseMatrix | |
assert params.__class__ == ImmutableDenseMatrix | |
# Test placement of free variables | |
A = Matrix([[1, 0, 0, 0], [0, 0, 0, 1]]) | |
b = Matrix([1, 1]) | |
sol, params = A.gauss_jordan_solve(b) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert sol == Matrix([[1], [w['tau0']], [w['tau1']], [1]]) | |
assert params == Matrix([[w['tau0']], [w['tau1']]]) | |
def test_linsolve_underdetermined_AND_gauss_jordan_solve(): | |
#Test placement of free variables as per issue 19815 | |
A = Matrix([[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) | |
B = Matrix([1, 2, 1, 1, 1, 1, 1, 2]) | |
sol, params = A.gauss_jordan_solve(B) | |
w = {} | |
for s in sol.atoms(Symbol): | |
w[s.name] = s | |
assert params == Matrix([[w['tau0']], [w['tau1']], [w['tau2']], | |
[w['tau3']], [w['tau4']], [w['tau5']]]) | |
assert sol == Matrix([[1 - 1*w['tau2']], | |
[w['tau2']], | |
[1 - 1*w['tau0'] + w['tau1']], | |
[w['tau0']], | |
[w['tau3'] + w['tau4']], | |
[-1*w['tau3'] - 1*w['tau4'] - 1*w['tau1']], | |
[1 - 1*w['tau2']], | |
[w['tau1']], | |
[w['tau2']], | |
[w['tau3']], | |
[w['tau4']], | |
[1 - 1*w['tau5']], | |
[w['tau5']], | |
[1]]) | |
from sympy.abc import j,f | |
# https://github.com/sympy/sympy/issues/20046 | |
A = Matrix([ | |
[1, 1, 1, 1, 1, 1, 1, 1, 1], | |
[0, -1, 0, -1, 0, -1, 0, -1, -j], | |
[0, 0, 0, 0, 1, 1, 1, 1, f] | |
]) | |
sol_1=Matrix(list(linsolve(A))[0]) | |
tau0, tau1, tau2, tau3, tau4 = symbols('tau:5') | |
assert sol_1 == Matrix([[-f - j - tau0 + tau2 + tau4 + 1], | |
[j - tau1 - tau2 - tau4], | |
[tau0], | |
[tau1], | |
[f - tau2 - tau3 - tau4], | |
[tau2], | |
[tau3], | |
[tau4]]) | |
# https://github.com/sympy/sympy/issues/19815 | |
sol_2 = A[:, : -1 ] * sol_1 - A[:, -1 ] | |
assert sol_2 == Matrix([[0], [0], [0]]) | |
def test_cramer_solve(det_method, M, rhs): | |
assert simplify(M.cramer_solve(rhs, det_method=det_method) - M.LUsolve(rhs) | |
) == Matrix.zeros(M.rows, rhs.cols) | |
def test_cramer_solve_errors(det_method, error): | |
# Non-square matrix | |
A = Matrix([[0, -1, 2], [5, 10, 7]]) | |
b = Matrix([-2, 15]) | |
raises(error, lambda: A.cramer_solve(b, det_method=det_method)) | |
def test_solve(): | |
A = Matrix([[1,2], [2,4]]) | |
b = Matrix([[3], [4]]) | |
raises(ValueError, lambda: A.solve(b)) #no solution | |
b = Matrix([[ 4], [8]]) | |
raises(ValueError, lambda: A.solve(b)) #infinite solution | |