Spaces:
Sleeping
Sleeping
File size: 15,599 Bytes
ebd1bb7 34d17cd ab7e592 34d17cd 0d47f17 34d17cd 4c39c75 9c7c267 accbd8f f72d8ff 54f6686 943da33 34d17cd b129b7d accbd8f 78c0ec0 34d17cd 14b02fd 522caaa f648e72 c48ef60 ac2e91b f648e72 522caaa c48ef60 f648e72 c48ef60 f648e72 c48ef60 f648e72 ad4f466 da1e0d4 ad4f466 ac2e91b ad4f466 7f7f33b ad4f466 7f7f33b ad4f466 f648e72 6e0b574 7f7f33b 6e0b574 7f7f33b 6e0b574 f648e72 241e962 f648e72 6e0b574 c48ef60 6e0b574 7f7f33b da1e0d4 6e0b574 c48ef60 ac2e91b 6e0b574 a73d493 6e0b574 c48ef60 6e0b574 7f7f33b 6e0b574 2a25020 f648e72 c48ef60 f648e72 8c472a8 34d17cd accbd8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from flask import Flask, render_template, request, redirect, url_for, send_from_directory
from flask_socketio import SocketIO
import threading
import os
from dotenv import load_dotenv
import sqlite3
# LangChain and agent imports
from langchain_community.chat_models.huggingface import ChatHuggingFace # if needed later
from langchain.agents import Tool
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_core.tools import tool
from langchain_community.agent_toolkits import PowerBIToolkit
from langchain.chains import LLMMathChain
from langchain import hub
from langchain_community.tools import DuckDuckGoSearchRun
# Agent requirements and type hints
from typing import Annotated, Literal, Sequence, TypedDict, Any
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, StateGraph, START
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
# Load environment variables
load_dotenv()
UPLOAD_FOLDER = "uploads/"
# In your .env file, ensure you have:
# DATABASE_URI=sqlite:///employee.db
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
DATABASE_URI = f"sqlite:///{os.path.join(BASE_DIR, 'data', 'mydb.db')}"
print("DATABASE URI:", DATABASE_URI)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["MISTRAL_API_KEY"] = MISTRAL_API_KEY
# Use ChatGroq LLM (which does not require a Hugging Face API token)
from langchain_groq import ChatGroq
from langchain_mistralai.chat_models import ChatMistralAI
###############################################################################
# Application Factory: create_app()
#
# This function sets up the Flask application, SocketIO, routes, and initializes
# the global agent_app using the default DATABASE_URI. It returns the Flask app.
###############################################################################
# --- Application Factory ---
abs_file_path = None
agent_app= None
def create_app():
def create_agent_app(db_path: str):
# Construct the SQLite URI from the given file path.
# Ensure the db_path is absolute so that SQLAlchemy can locate the file.
#llm = ChatMistralAI(model="mistral-large-latest")
llm = ChatGroq(model="llama3-70b-8192")
@tool
def db_query_tool(query: str) -> str:
"""
Execute a SQL query against the database and return the result.
If the query is invalid or returns no result, an error message will be returned.
In case of an error, the user is advised to rewrite the query and try again.
"""
result = db_instance.run_no_throw(query)
if not result:
return "Error: Query failed. Please rewrite your query and try again."
return result
# Define a Pydantic model for submitting the final answer
class SubmitFinalAnswer(BaseModel):
"""Submit the final answer to the user based on the query results."""
final_answer: str = Field(..., description="The final answer to the user")
# Define the state type
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
# Define prompt templates for query checking and query generation
from langchain_core.prompts import ChatPromptTemplate
query_check_system = """You are a SQL expert with a strong attention to detail.
Double check the SQLite query for common mistakes, including:
- Using NOT IN with NULL values
- Using UNION when UNION ALL should have been used
- Using BETWEEN for exclusive ranges
- Data type mismatch in predicates
- Properly quoting identifiers
- Using the correct number of arguments for functions
- Casting to the correct data type
- Using the proper columns for joins
If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.
You will call the appropriate tool to execute the query after running this check."""
query_check_prompt = ChatPromptTemplate.from_messages([("system", query_check_system), ("placeholder", "{messages}")])
query_check = query_check_prompt | llm.bind_tools([db_query_tool])
query_gen_system = """You are a SQL expert with a strong attention to detail.
Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.
DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.
When generating the query:
Output the SQL query that answers the input question without a tool call.
Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.
You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for the relevant columns given the question.
If you get an error while executing a query, rewrite the query and try again.
If you get an empty result set, you should try to rewrite the query to get a non-empty result set.
NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.
If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any sql query except answer."""
query_gen_prompt = ChatPromptTemplate.from_messages([("system", query_gen_system), ("placeholder", "{messages}")])
query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])
abs_db_path = os.path.abspath(db_path)
global DATABASE_URI
DATABASE_URI = abs_db_path
db_uri = f"sqlite:///{abs_db_path}"
print("db_uri",db_uri)
# Create new SQLDatabase connection using the constructed URI.
from langchain_community.utilities import SQLDatabase
db_instance = SQLDatabase.from_uri(db_uri)
print("db_instance----->",db_instance)
print("db_uri----->",db_uri)
# Create SQL toolkit and get the tools.
from langchain_community.agent_toolkits import SQLDatabaseToolkit
toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
tools_instance = toolkit_instance.get_tools()
# Define workflow nodes and fallback functions
def first_tool_call(state: State) -> dict[str, list[AIMessage]]:
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
def handle_tool_error(state: State) -> dict:
error = state.get("error")
tool_calls = state["messages"][-1].tool_calls
return {
"messages": [
ToolMessage(content=f"Error: {repr(error)}\n please fix your mistakes.", tool_call_id=tc["id"])
for tc in tool_calls
]
}
def create_tool_node_with_fallback(tools_list: list) -> RunnableWithFallbacks[Any, dict]:
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
def query_gen_node(state: State):
message = query_gen.invoke(state)
# Check for incorrect tool calls
tool_messages = []
if message.tool_calls:
for tc in message.tool_calls:
if tc["name"] != "SubmitFinalAnswer":
tool_messages.append(
ToolMessage(
content=f"Error: The wrong tool was called: {tc['name']}. Please fix your mistakes. Remember to only call SubmitFinalAnswer to submit the final answer. Generated queries should be outputted WITHOUT a tool call.",
tool_call_id=tc["id"],
)
)
return {"messages": [message] + tool_messages}
def should_continue(state: State) -> Literal[END, "correct_query", "query_gen"]:
messages = state["messages"]
last_message = messages[-1]
if getattr(last_message, "tool_calls", None):
return END
if last_message.content.startswith("Error:"):
return "query_gen"
else:
return "correct_query"
def model_check_query(state: State) -> dict[str, list[AIMessage]]:
"""Double-check if the query is correct before executing it."""
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
# Get tools for listing tables and fetching schema
list_tables_tool = next((tool for tool in tools_instance if tool.name == "sql_db_list_tables"), None)
get_schema_tool = next((tool for tool in tools_instance if tool.name == "sql_db_schema"), None)
# Define the workflow (state graph)
workflow = StateGraph(State)
workflow.add_node("first_tool_call", first_tool_call)
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tables_tool]))
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([get_schema_tool]))
model_get_schema = llm.bind_tools([get_schema_tool])
workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])],})
workflow.add_node("query_gen", query_gen_node)
workflow.add_node("correct_query", model_check_query)
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
workflow.add_edge(START, "first_tool_call")
workflow.add_edge("first_tool_call", "list_tables_tool")
workflow.add_edge("list_tables_tool", "model_get_schema")
workflow.add_edge("model_get_schema", "get_schema_tool")
workflow.add_edge("get_schema_tool", "query_gen")
workflow.add_conditional_edges("query_gen", should_continue)
workflow.add_edge("correct_query", "execute_query")
workflow.add_edge("execute_query", "query_gen")
# Compile and return the agent application workflow.
return workflow.compile()
# Option: configure static files from uploads folder as well.
flask_app = Flask(__name__, static_url_path='/uploads', static_folder='uploads')
socketio = SocketIO(flask_app, cors_allowed_origins="*")
# Set up uploads folder
UPLOAD_FOLDER_LOCAL = os.path.join(os.getcwd(), "uploads")
if not os.path.exists(UPLOAD_FOLDER_LOCAL):
os.makedirs(UPLOAD_FOLDER_LOCAL)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER_LOCAL
# Static route: option if you want a custom route to serve files:
@flask_app.route("/files/<path:filename>")
def uploaded_file(filename):
return send_from_directory(flask_app.config['UPLOAD_FOLDER'], filename)
# Helper function to run the agent; uses the global agent_app.
def run_agent(prompt, socketio):
global agent_app
if agent_app is None:
socketio.emit("log", {"message": "[ERROR]: No database has been uploaded. Please upload a database file first."})
socketio.emit("final", {"message": "No database available. Upload a database and try again."})
return
try:
query = {"messages": [("user", prompt)]}
agent_app = create_agent_app(abs_file_path)
result = agent_app.invoke(query)
try:
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
except Exception:
result = "Query failed or no valid answer found."
print("final_answer------>", result)
socketio.emit("final", {"message": f"{result}"})
except Exception as e:
print(f"[ERROR]: {str(e)}")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
socketio.emit("final", {"message": "Generation failed."})
@flask_app.route("/")
def index():
return render_template("index.html")
@flask_app.route("/generate", methods=["POST"])
def generate():
try:
socketio.emit("log", {"message": "[STEP]: Entering query_gen..."})
data = request.json
prompt = data.get("prompt", "")
socketio.emit("log", {"message": f"[INFO]: Received prompt: {prompt}\n"})
# Run the agent in a separate thread
thread = threading.Thread(target=run_agent, args=(prompt, socketio))
socketio.emit("log", {"message": f"[INFO]: thread info: {thread}\n"})
thread.start()
return "OK", 200
except Exception as e:
print(f"[ERROR]: {str(e)}")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
@flask_app.route("/upload", methods=["POST", "GET"])
def upload():
try:
if request.method == 'POST':
file = request.files.get('file')
if not file:
print("No file uploaded")
return "No file uploaded", 400
if file and file.filename.endswith('.db'):
# Save file using flask_app.config
db_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], 'uploaded.db')
socketio.emit("log", {"message": f"[INFO]: Saving file to: {db_path}\n"})
print("Saving file to:", db_path)
file.save(db_path)
# Reinitialize the agent_app with the new database file
global abs_file_path
abs_file_path = os.path.abspath(db_path)
global agent_app
agent_app = create_agent_app(abs_file_path)
print(f"[INFO_PRINT]: Database file '{file.filename}' uploaded and loaded.")
socketio.emit("log", {"message": f"[INFO]: Database file '{file.filename}' uploaded and loaded."})
return redirect(url_for("index"))
# For GET, render upload form:
return render_template("upload.html")
except Exception as e:
print(f"[ERROR]: {str(e)}")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
return render_template("upload.html")
return flask_app, socketio
# Create the app for Gunicorn compatibility.
app, socketio_instance = create_app()
if __name__ == "__main__":
socketio_instance.run(app, debug=True)
|