Spaces:
Sleeping
Sleeping
File size: 15,999 Bytes
ebd1bb7 34d17cd e585eee 34d17cd 0d47f17 34d17cd e585eee 34d17cd e585eee f72d8ff 54f6686 943da33 e585eee 34d17cd b129b7d accbd8f 78c0ec0 34d17cd e585eee ac2e91b 7864980 ac2e91b e585eee 7864980 e585eee 7864980 e585eee 522caaa e585eee c48ef60 f648e72 e585eee c48ef60 f648e72 e585eee ad4f466 da1e0d4 e585eee 7864980 e585eee da1e0d4 ad4f466 7864980 ad4f466 7864980 ad4f466 e585eee ad4f466 7f7f33b 7864980 ad4f466 f648e72 e585eee f648e72 e585eee f648e72 6e0b574 e585eee 6e0b574 e585eee 6e0b574 7f7f33b 7864980 6e0b574 e585eee f648e72 e585eee f648e72 7864980 6e0b574 e585eee 6e0b574 e585eee da1e0d4 6e0b574 7864980 e585eee c48ef60 6e0b574 7f7f33b 7864980 6e0b574 2a25020 f648e72 e585eee c48ef60 e585eee f648e72 8c472a8 34d17cd accbd8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from flask import Flask, render_template, request, redirect, url_for, send_from_directory
from flask_socketio import SocketIO
import threading
import os
from dotenv import load_dotenv
import sqlite3
from werkzeug.utils import secure_filename
# LangChain and agent imports
from langchain_community.chat_models.huggingface import ChatHuggingFace # if needed later
from langchain.agents import Tool
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_core.tools import tool
from langchain_community.agent_toolkits import PowerBIToolkit
from langchain.chains import LLMMathChain
from langchain import hub
from langchain_community.tools import DuckDuckGoSearchRun
# Agent requirements and type hints
from typing import Annotated, Literal, TypedDict, Any
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, StateGraph, START
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
# Load environment variables
load_dotenv()
# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
DATABASE_URI = f"sqlite:///{os.path.join(BASE_DIR, 'data', 'mydb.db')}"
print("DATABASE URI:", DATABASE_URI)
# API Keys from .env file
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["MISTRAL_API_KEY"] = MISTRAL_API_KEY
# Global variables for dynamic agent and DB file path; initially None.
agent_app = None
abs_file_path = None
db_path = None
# =============================================================================
# create_agent_app: Given a database path, initialize the agent workflow.
# =============================================================================
def create_agent_app(db_path: str):
# Use ChatGroq as our LLM here; you can swap to ChatMistralAI if preferred.
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-70b-8192")
# -------------------------------------------------------------------------
# Define a tool for executing SQL queries.
# -------------------------------------------------------------------------
@tool
def db_query_tool(query: str) -> str:
result = db_instance.run_no_throw(query)
return result if result else "Error: Query failed. Please rewrite your query and try again."
# -------------------------------------------------------------------------
# Pydantic model for final answer
# -------------------------------------------------------------------------
class SubmitFinalAnswer(BaseModel):
final_answer: str = Field(..., description="The final answer to the user")
# -------------------------------------------------------------------------
# Define state type for our workflow.
# -------------------------------------------------------------------------
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
# -------------------------------------------------------------------------
# Set up prompt templates (using langchain_core.prompts) for query checking
# and query generation.
# -------------------------------------------------------------------------
from langchain_core.prompts import ChatPromptTemplate
query_check_system = (
"You are a SQL expert with a strong attention to detail.\n"
"Double check the SQLite query for common mistakes, including:\n"
"- Using NOT IN with NULL values\n"
"- Using UNION when UNION ALL should have been used\n"
"- Using BETWEEN for exclusive ranges\n"
"- Data type mismatch in predicates\n"
"- Properly quoting identifiers\n"
"- Using the correct number of arguments for functions\n"
"- Casting to the correct data type\n"
"- Using the proper columns for joins\n\n"
"If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n"
"You will call the appropriate tool to execute the query after running this check."
)
query_check_prompt = ChatPromptTemplate.from_messages([
("system", query_check_system),
("placeholder", "{messages}")
])
query_check = query_check_prompt | llm.bind_tools([db_query_tool])
query_gen_system = (
"You are a SQL expert with a strong attention to detail.\n\n"
"Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.\n\n"
"DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.\n\n"
"When generating the query:\n"
"Output the SQL query that answers the input question without a tool call.\n"
"Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.\n"
"You can order the results by a relevant column to return the most interesting examples in the database.\n"
"Never query for all the columns from a specific table, only ask for the relevant columns given the question.\n\n"
"If you get an error while executing a query, rewrite the query and try again.\n"
"If you get an empty result set, you should try to rewrite the query to get a non-empty result set.\n"
"NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.\n\n"
"If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.\n"
"DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any sql query except answer."
)
query_gen_prompt = ChatPromptTemplate.from_messages([
("system", query_gen_system),
("placeholder", "{messages}")
])
query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])
# Update database URI and file path
abs_db_path_local = os.path.abspath(db_path)
global DATABASE_URI
DATABASE_URI = abs_db_path_local
db_uri = f"sqlite:///{abs_db_path_local}"
print("db_uri", db_uri)
flash(f"db_uri:{db_uri}", "warning")
# Create SQLDatabase connection using langchain utility.
from langchain_community.utilities import SQLDatabase
db_instance = SQLDatabase.from_uri(db_uri)
print("db_instance----->", db_instance)
flash(f"db_instance:{db_instance}", "warning")
# Create SQL toolkit.
from langchain_community.agent_toolkits import SQLDatabaseToolkit
toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
tools_instance = toolkit_instance.get_tools()
# Define workflow nodes and fallback functions.
def first_tool_call(state: State) -> dict[str, list[AIMessage]]:
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
def handle_tool_error(state: State) -> dict:
error = state.get("error")
tool_calls = state["messages"][-1].tool_calls
return {"messages": [
ToolMessage(content=f"Error: {repr(error)}. Please fix your mistakes.", tool_call_id=tc["id"])
for tc in tool_calls
]}
def create_tool_node_with_fallback(tools_list: list) -> RunnableWithFallbacks[Any, dict]:
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
def query_gen_node(state: State):
message = query_gen.invoke(state)
tool_messages = []
if message.tool_calls:
for tc in message.tool_calls:
if tc["name"] != "SubmitFinalAnswer":
tool_messages.append(ToolMessage(
content=f"Error: The wrong tool was called: {tc['name']}. Please fix your mistakes.",
tool_call_id=tc["id"]
))
return {"messages": [message] + tool_messages}
def should_continue(state: State) -> Literal[END, "correct_query", "query_gen"]:
messages = state["messages"]
last_message = messages[-1]
if getattr(last_message, "tool_calls", None):
return END
if last_message.content.startswith("Error:"):
return "query_gen"
return "correct_query"
def model_check_query(state: State) -> dict[str, list[AIMessage]]:
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
# Get table listing and schema tools.
list_tables_tool = next((tool for tool in tools_instance if tool.name == "sql_db_list_tables"), None)
get_schema_tool = next((tool for tool in tools_instance if tool.name == "sql_db_schema"), None)
workflow = StateGraph(State)
workflow.add_node("first_tool_call", first_tool_call)
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tables_tool]))
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([get_schema_tool]))
model_get_schema = llm.bind_tools([get_schema_tool])
workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])],})
workflow.add_node("query_gen", query_gen_node)
workflow.add_node("correct_query", model_check_query)
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
workflow.add_edge(START, "first_tool_call")
workflow.add_edge("first_tool_call", "list_tables_tool")
workflow.add_edge("list_tables_tool", "model_get_schema")
workflow.add_edge("model_get_schema", "get_schema_tool")
workflow.add_edge("get_schema_tool", "query_gen")
workflow.add_conditional_edges("query_gen", should_continue)
workflow.add_edge("correct_query", "execute_query")
workflow.add_edge("execute_query", "query_gen")
# Return compiled workflow
return workflow.compile()
# =============================================================================
# create_app: The application factory.
# =============================================================================
def create_app():
# Configure static folder for uploads.
flask_app = Flask(__name__, static_url_path='/uploads', static_folder='uploads')
socketio = SocketIO(flask_app, cors_allowed_origins="*")
# Ensure uploads folder exists.
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# Serve uploaded files via a custom route.
@flask_app.route("/files/<path:filename>")
def uploaded_file(filename):
return send_from_directory(flask_app.config['UPLOAD_FOLDER'], filename)
# -------------------------------------------------------------------------
# Helper: run_agent runs the agent with the given prompt.
# -------------------------------------------------------------------------
def run_agent(prompt, socketio):
global agent_app
if agent_app is None:
socketio.emit("log", {"message": "[ERROR]: No database has been uploaded. Upload a database file first."})
flash(f"[ERROR]: No database has been uploaded. Upload a database file first.", "error")
socketio.emit("final", {"message": "No database available. Upload one and try again."})
return
try:
abs_file_path = os.path.abspath(db_path)
agent_app = create_agent_app(abs_file_path)
query = {"messages": [("user", prompt)]}
result = agent_app.invoke(query)
try:
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
except Exception:
result = "Query failed or no valid answer found."
flash(f"[ERROR]: Query failed or no valid answer found.", "error")
print("final_answer------>", result)
socketio.emit("final", {"message": result})
except Exception as e:
print(f"[ERROR]: {str(e)}")
flash(f"[ERROR]: {str(e)}", "error")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
socketio.emit("final", {"message": "Generation failed."})
# -------------------------------------------------------------------------
# Route: index page
# -------------------------------------------------------------------------
@flask_app.route("/")
def index():
return render_template("index.html")
# -------------------------------------------------------------------------
# Route: generate (POST) – receives a prompt, runs the agent.
# -------------------------------------------------------------------------
@flask_app.route("/generate", methods=["POST"])
def generate():
try:
socketio.emit("log", {"message": "[STEP]: Entering query_gen..."})
data = request.json
prompt = data.get("prompt", "")
socketio.emit("log", {"message": f"[INFO]: Received prompt: {prompt}"})
thread = threading.Thread(target=run_agent, args=(prompt, socketio))
socketio.emit("log", {"message": f"[INFO]: Starting thread: {thread}"})
thread.start()
return "OK", 200
except Exception as e:
print(f"[ERROR]: {str(e)}")
flash(f"[ERROR]: {str(e)}", "error")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
return "ERROR", 500
# -------------------------------------------------------------------------
# Route: upload (GET/POST) – handles uploading the SQLite DB file.
# -------------------------------------------------------------------------
@flask_app.route("/upload", methods=["GET", "POST"])
def upload():
global abs_file_path, agent_app, db_path
try:
if request.method == "POST":
file = request.files.get("file")
if not file:
print("No file uploaded")
return "No file uploaded", 400
# Secure the filename to avoid path traversal issues.
filename = secure_filename(file.filename)
if filename.endswith('.db'):
db_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
print("Saving file to:", db_path)
file.save(db_path)
#abs_file_path = os.path.abspath(db_path)
#agent_app = create_agent_app(abs_file_path)
print(f"[INFO]: Database file '{filename}' uploaded and loaded.")
socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded and loaded."})
return redirect(url_for("index"))
return render_template("upload.html")
except Exception as e:
print(f"[ERROR]: {str(e)}")
flash(f"[ERROR]: {str(e)}", "error")
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
return render_template("upload.html")
return flask_app, socketio
# =============================================================================
# Create the app for Gunicorn compatibility.
# =============================================================================
app, socketio_instance = create_app()
if __name__ == "__main__":
socketio_instance.run(app, debug=True)
|