Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,185 +1,86 @@
|
|
1 |
-
from flask import Flask, render_template, request, redirect, url_for
|
2 |
from flask_socketio import SocketIO
|
3 |
-
import threading
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
-
import sqlite3
|
7 |
from werkzeug.utils import secure_filename
|
8 |
|
9 |
# LangChain and agent imports
|
10 |
-
from
|
11 |
-
from langchain.agents import Tool
|
12 |
-
from langchain.agents.format_scratchpad import format_log_to_str
|
13 |
-
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
|
14 |
-
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
|
15 |
-
from langchain_community.agent_toolkits.load_tools import load_tools
|
16 |
-
from langchain_core.tools import tool
|
17 |
-
from langchain_community.agent_toolkits import PowerBIToolkit
|
18 |
-
from langchain.chains import LLMMathChain
|
19 |
-
from langchain import hub
|
20 |
-
from langchain_community.tools import DuckDuckGoSearchRun
|
21 |
-
|
22 |
-
# Agent requirements and type hints
|
23 |
-
from typing import Annotated, Literal, TypedDict, Any
|
24 |
from langchain_core.messages import AIMessage, ToolMessage
|
25 |
from pydantic import BaseModel, Field
|
26 |
from typing_extensions import TypedDict
|
27 |
-
from langgraph.graph import END,
|
28 |
from langgraph.graph.message import AnyMessage, add_messages
|
29 |
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
|
30 |
from langgraph.prebuilt import ToolNode
|
31 |
-
|
|
|
|
|
|
|
32 |
import traceback
|
33 |
|
34 |
# Load environment variables
|
35 |
load_dotenv()
|
36 |
|
37 |
-
|
38 |
# Global configuration variables
|
39 |
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
|
|
|
40 |
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
41 |
-
DATABASE_URI = f"sqlite:///{os.path.join(BASE_DIR, 'data', 'mydb.db')}"
|
42 |
-
print("DATABASE URI:", DATABASE_URI)
|
43 |
|
44 |
# API Keys from .env file
|
45 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
46 |
-
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
47 |
-
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
48 |
-
os.environ["MISTRAL_API_KEY"] = MISTRAL_API_KEY
|
49 |
|
50 |
-
#
|
|
|
|
|
|
|
|
|
|
|
51 |
agent_app = None
|
52 |
abs_file_path = None
|
53 |
-
db_path = None
|
54 |
-
|
55 |
-
print(traceback.format_exc())
|
56 |
-
|
57 |
-
# =============================================================================
|
58 |
-
# create_agent_app: Given a database path, initialize the agent workflow.
|
59 |
-
# =============================================================================
|
60 |
|
61 |
def create_agent_app(db_path: str):
|
62 |
-
# Use ChatGroq as our LLM here; you can swap to ChatMistralAI if preferred.
|
63 |
from langchain_groq import ChatGroq
|
64 |
llm = ChatGroq(model="llama3-70b-8192")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
@tool
|
70 |
def db_query_tool(query: str) -> str:
|
71 |
-
"""
|
72 |
-
Executes a SQL query on the connected SQLite database.
|
73 |
-
|
74 |
-
Parameters:
|
75 |
-
query (str): A SQL query string to be executed.
|
76 |
-
|
77 |
-
Returns:
|
78 |
-
str: The result from the database if successful, or an error message if not.
|
79 |
-
"""
|
80 |
result = db_instance.run_no_throw(query)
|
81 |
-
return result
|
82 |
|
83 |
-
# -------------------------------------------------------------------------
|
84 |
-
# Pydantic model for final answer
|
85 |
-
# -------------------------------------------------------------------------
|
86 |
class SubmitFinalAnswer(BaseModel):
|
87 |
-
final_answer: str = Field(
|
88 |
|
89 |
-
# -------------------------------------------------------------------------
|
90 |
-
# Define state type for our workflow.
|
91 |
-
# -------------------------------------------------------------------------
|
92 |
class State(TypedDict):
|
93 |
messages: Annotated[list[AnyMessage], add_messages]
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
# and query generation.
|
98 |
-
# -------------------------------------------------------------------------
|
99 |
-
from langchain_core.prompts import ChatPromptTemplate
|
100 |
-
|
101 |
-
query_check_system = (
|
102 |
-
"You are a SQL expert with a strong attention to detail.\n"
|
103 |
-
"Double check the SQLite query for common mistakes, including:\n"
|
104 |
-
"- Using NOT IN with NULL values\n"
|
105 |
-
"- Using UNION when UNION ALL should have been used\n"
|
106 |
-
"- Using BETWEEN for exclusive ranges\n"
|
107 |
-
"- Data type mismatch in predicates\n"
|
108 |
-
"- Properly quoting identifiers\n"
|
109 |
-
"- Using the correct number of arguments for functions\n"
|
110 |
-
"- Casting to the correct data type\n"
|
111 |
-
"- Using the proper columns for joins\n\n"
|
112 |
-
"If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n"
|
113 |
-
"You will call the appropriate tool to execute the query after running this check."
|
114 |
-
)
|
115 |
-
query_check_prompt = ChatPromptTemplate.from_messages([
|
116 |
-
("system", query_check_system),
|
117 |
("placeholder", "{messages}")
|
118 |
-
])
|
119 |
-
query_check = query_check_prompt | llm.bind_tools([db_query_tool])
|
120 |
|
121 |
-
|
122 |
-
"You are a SQL expert
|
123 |
-
"Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.\n\n"
|
124 |
-
"DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.\n\n"
|
125 |
-
"When generating the query:\n"
|
126 |
-
"Output the SQL query that answers the input question without a tool call.\n"
|
127 |
-
"Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.\n"
|
128 |
-
"You can order the results by a relevant column to return the most interesting examples in the database.\n"
|
129 |
-
"Never query for all the columns from a specific table, only ask for the relevant columns given the question.\n\n"
|
130 |
-
"If you get an error while executing a query, rewrite the query and try again.\n"
|
131 |
-
"If you get an empty result set, you should try to rewrite the query to get a non-empty result set.\n"
|
132 |
-
"NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.\n\n"
|
133 |
-
"If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.\n"
|
134 |
-
"DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any SQL query except answer."
|
135 |
-
)
|
136 |
-
query_gen_prompt = ChatPromptTemplate.from_messages([
|
137 |
-
("system", query_gen_system),
|
138 |
("placeholder", "{messages}")
|
139 |
-
])
|
140 |
-
query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
# -------------------------------------------------------------------------
|
145 |
-
|
146 |
-
abs_db_path_local = os.path.abspath(db_path)
|
147 |
-
global DATABASE_URI
|
148 |
-
DATABASE_URI = abs_db_path_local
|
149 |
-
db_uri = f"sqlite:///{abs_db_path_local}"
|
150 |
-
print("db_uri", db_uri)
|
151 |
-
# Uncomment if flash is needed; ensure you have flask.flash imported if so.
|
152 |
-
# flash(f"db_uri:{db_uri}", "warning")
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
print("db_instance----->", db_instance)
|
157 |
-
# flash(f"db_instance:{db_instance}", "warning")
|
158 |
|
159 |
-
|
160 |
-
# Create SQL toolkit.
|
161 |
-
# -------------------------------------------------------------------------
|
162 |
-
|
163 |
-
from langchain_community.agent_toolkits import SQLDatabaseToolkit
|
164 |
-
toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
|
165 |
-
tools_instance = toolkit_instance.get_tools()
|
166 |
-
|
167 |
-
# -------------------------------------------------------------------------
|
168 |
-
# Define workflow nodes and fallback functions.
|
169 |
-
# -------------------------------------------------------------------------
|
170 |
-
|
171 |
-
def first_tool_call(state: State) -> dict[str, list[AIMessage]]:
|
172 |
-
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
|
173 |
-
|
174 |
-
def handle_tool_error(state: State) -> dict:
|
175 |
-
error = state.get("error")
|
176 |
tool_calls = state["messages"][-1].tool_calls
|
177 |
return {"messages": [
|
178 |
-
ToolMessage(content=
|
179 |
-
for tc in tool_calls
|
180 |
]}
|
181 |
|
182 |
-
def create_tool_node_with_fallback(tools_list
|
183 |
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
|
184 |
|
185 |
def query_gen_node(state: State):
|
@@ -189,36 +90,31 @@ def create_agent_app(db_path: str):
|
|
189 |
for tc in message.tool_calls:
|
190 |
if tc["name"] != "SubmitFinalAnswer":
|
191 |
tool_messages.append(ToolMessage(
|
192 |
-
content=f"Error:
|
193 |
tool_call_id=tc["id"]
|
194 |
))
|
195 |
return {"messages": [message] + tool_messages}
|
196 |
|
197 |
-
def should_continue(state: State)
|
198 |
-
|
199 |
-
last_message = messages[-1]
|
200 |
if getattr(last_message, "tool_calls", None):
|
201 |
return END
|
202 |
if last_message.content.startswith("Error:"):
|
203 |
return "query_gen"
|
204 |
return "correct_query"
|
205 |
|
206 |
-
def model_check_query(state: State)
|
207 |
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
list_tables_tool = next((tool for tool in tools_instance if tool.name == "sql_db_list_tables"), None)
|
214 |
-
get_schema_tool = next((tool for tool in tools_instance if tool.name == "sql_db_schema"), None)
|
215 |
|
216 |
workflow = StateGraph(State)
|
217 |
workflow.add_node("first_tool_call", first_tool_call)
|
218 |
-
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([
|
219 |
-
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([
|
220 |
-
model_get_schema
|
221 |
-
workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])],})
|
222 |
workflow.add_node("query_gen", query_gen_node)
|
223 |
workflow.add_node("correct_query", model_check_query)
|
224 |
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
|
@@ -232,37 +128,15 @@ def create_agent_app(db_path: str):
|
|
232 |
workflow.add_edge("correct_query", "execute_query")
|
233 |
workflow.add_edge("execute_query", "query_gen")
|
234 |
|
235 |
-
# Return compiled workflow
|
236 |
return workflow.compile()
|
237 |
|
238 |
-
|
239 |
-
# =============================================================================
|
240 |
-
# create_app: The application factory.
|
241 |
-
# =============================================================================
|
242 |
-
|
243 |
-
# Flask and SocketIO setup
|
244 |
-
flask_app = Flask(__name__)
|
245 |
-
flask_app.config['UPLOAD_FOLDER'] = "uploaded_files"
|
246 |
-
os.makedirs(flask_app.config['UPLOAD_FOLDER'], exist_ok=True)
|
247 |
-
|
248 |
-
socketio = SocketIO(flask_app, cors_allowed_origins="*")
|
249 |
-
|
250 |
-
# Global variables to manage state
|
251 |
-
agent_app = None
|
252 |
-
db_path = None
|
253 |
-
abs_file_path = None
|
254 |
-
|
255 |
-
# ----------------------------
|
256 |
-
# ROUTES
|
257 |
-
# ----------------------------
|
258 |
-
|
259 |
@flask_app.route("/", methods=["GET"])
|
260 |
def index():
|
261 |
return render_template("index.html")
|
262 |
|
263 |
@flask_app.route("/upload", methods=["GET", "POST"])
|
264 |
def upload():
|
265 |
-
global abs_file_path,
|
266 |
try:
|
267 |
if request.method == "POST":
|
268 |
file = request.files.get("file")
|
@@ -271,69 +145,45 @@ def upload():
|
|
271 |
|
272 |
filename = secure_filename(file.filename)
|
273 |
if filename.endswith('.db'):
|
274 |
-
|
275 |
-
file.save(
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
print(f"[INFO]: File '{filename}' uploaded. Agent will be initialized on first query.")
|
281 |
-
socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded."})
|
282 |
-
|
283 |
return redirect(url_for("index"))
|
284 |
return render_template("upload.html")
|
285 |
except Exception as e:
|
286 |
-
print(f"[ERROR]: {str(e)}")
|
287 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
288 |
return render_template("upload.html")
|
289 |
|
290 |
-
|
291 |
-
# ----------------------------
|
292 |
-
# AGENT INVOCATION
|
293 |
-
# ----------------------------
|
294 |
-
|
295 |
@socketio.on("user_input")
|
296 |
def handle_user_input(data):
|
297 |
prompt = data.get("message")
|
298 |
if not prompt:
|
299 |
-
socketio.emit("log", {"message": "[ERROR]: Empty prompt
|
300 |
return
|
301 |
-
|
302 |
run_agent(prompt)
|
303 |
|
304 |
-
|
305 |
def run_agent(prompt):
|
306 |
global agent_app, abs_file_path
|
307 |
if not abs_file_path:
|
308 |
-
socketio.emit("
|
309 |
-
socketio.emit("final", {"message": "No database available. Please upload one and try again."})
|
310 |
return
|
311 |
-
|
312 |
try:
|
313 |
if agent_app is None:
|
314 |
-
print("[INFO]: Initializing agent for the first time...")
|
315 |
agent_app = create_agent_app(abs_file_path)
|
316 |
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
|
317 |
|
318 |
query = {"messages": [("user", prompt)]}
|
319 |
result = agent_app.invoke(query)
|
320 |
-
|
321 |
try:
|
322 |
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
|
323 |
except Exception:
|
324 |
result = "Query failed or no valid answer found."
|
325 |
-
|
326 |
-
print("final_answer------>", result)
|
327 |
socketio.emit("final", {"message": result})
|
328 |
except Exception as e:
|
329 |
-
print(f"[ERROR]: {str(e)}")
|
330 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
331 |
socketio.emit("final", {"message": "Generation failed."})
|
332 |
|
333 |
-
|
334 |
-
# ----------------------------
|
335 |
-
# MAIN
|
336 |
-
# ----------------------------
|
337 |
-
|
338 |
if __name__ == "__main__":
|
339 |
-
socketio.run(flask_app, debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for
|
2 |
from flask_socketio import SocketIO
|
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
|
|
5 |
from werkzeug.utils import secure_filename
|
6 |
|
7 |
# LangChain and agent imports
|
8 |
+
from typing import Annotated, Literal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_core.messages import AIMessage, ToolMessage
|
10 |
from pydantic import BaseModel, Field
|
11 |
from typing_extensions import TypedDict
|
12 |
+
from langgraph.graph import END, START, StateGraph
|
13 |
from langgraph.graph.message import AnyMessage, add_messages
|
14 |
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
|
15 |
from langgraph.prebuilt import ToolNode
|
16 |
+
from langchain_core.prompts import ChatPromptTemplate
|
17 |
+
from langchain_community.utilities import SQLDatabase
|
18 |
+
from langchain_community.agent_toolkits import SQLDatabaseToolkit
|
19 |
+
from langchain_core.tools import tool
|
20 |
import traceback
|
21 |
|
22 |
# Load environment variables
|
23 |
load_dotenv()
|
24 |
|
|
|
25 |
# Global configuration variables
|
26 |
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
|
27 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
28 |
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
|
29 |
|
30 |
# API Keys from .env file
|
31 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
32 |
+
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")
|
|
|
|
|
33 |
|
34 |
+
# Flask and SocketIO setup
|
35 |
+
flask_app = Flask(__name__)
|
36 |
+
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
37 |
+
socketio = SocketIO(flask_app, cors_allowed_origins="*")
|
38 |
+
|
39 |
+
# Global state
|
40 |
agent_app = None
|
41 |
abs_file_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def create_agent_app(db_path: str):
|
|
|
44 |
from langchain_groq import ChatGroq
|
45 |
llm = ChatGroq(model="llama3-70b-8192")
|
46 |
|
47 |
+
abs_db_path = os.path.abspath(db_path)
|
48 |
+
db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}")
|
49 |
+
|
50 |
@tool
|
51 |
def db_query_tool(query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
result = db_instance.run_no_throw(query)
|
53 |
+
return result or "Error: Query failed. Please rewrite your query and try again."
|
54 |
|
|
|
|
|
|
|
55 |
class SubmitFinalAnswer(BaseModel):
|
56 |
+
final_answer: str = Field(...)
|
57 |
|
|
|
|
|
|
|
58 |
class State(TypedDict):
|
59 |
messages: Annotated[list[AnyMessage], add_messages]
|
60 |
|
61 |
+
query_check = ChatPromptTemplate.from_messages([
|
62 |
+
("system", "You are a SQL expert. Fix common issues in SQLite queries."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
("placeholder", "{messages}")
|
64 |
+
]) | llm.bind_tools([db_query_tool])
|
|
|
65 |
|
66 |
+
query_gen = ChatPromptTemplate.from_messages([
|
67 |
+
("system", "You are a SQL expert. Generate SQLite query and return answer using SubmitFinalAnswer tool."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
("placeholder", "{messages}")
|
69 |
+
]) | llm.bind_tools([SubmitFinalAnswer])
|
|
|
70 |
|
71 |
+
toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm)
|
72 |
+
tools_instance = toolkit.get_tools()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
def first_tool_call(state: State):
|
75 |
+
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
|
|
|
|
|
76 |
|
77 |
+
def handle_tool_error(state: State):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
tool_calls = state["messages"][-1].tool_calls
|
79 |
return {"messages": [
|
80 |
+
ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
|
|
|
81 |
]}
|
82 |
|
83 |
+
def create_tool_node_with_fallback(tools_list):
|
84 |
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
|
85 |
|
86 |
def query_gen_node(state: State):
|
|
|
90 |
for tc in message.tool_calls:
|
91 |
if tc["name"] != "SubmitFinalAnswer":
|
92 |
tool_messages.append(ToolMessage(
|
93 |
+
content=f"Error: Wrong tool called: {tc['name']}",
|
94 |
tool_call_id=tc["id"]
|
95 |
))
|
96 |
return {"messages": [message] + tool_messages}
|
97 |
|
98 |
+
def should_continue(state: State):
|
99 |
+
last_message = state["messages"][-1]
|
|
|
100 |
if getattr(last_message, "tool_calls", None):
|
101 |
return END
|
102 |
if last_message.content.startswith("Error:"):
|
103 |
return "query_gen"
|
104 |
return "correct_query"
|
105 |
|
106 |
+
def model_check_query(state: State):
|
107 |
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
|
108 |
|
109 |
+
list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
|
110 |
+
schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
|
111 |
+
model_get_schema = llm.bind_tools([schema_tool])
|
|
|
|
|
|
|
112 |
|
113 |
workflow = StateGraph(State)
|
114 |
workflow.add_node("first_tool_call", first_tool_call)
|
115 |
+
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool]))
|
116 |
+
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
|
117 |
+
workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages\])]})
|
|
|
118 |
workflow.add_node("query_gen", query_gen_node)
|
119 |
workflow.add_node("correct_query", model_check_query)
|
120 |
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
|
|
|
128 |
workflow.add_edge("correct_query", "execute_query")
|
129 |
workflow.add_edge("execute_query", "query_gen")
|
130 |
|
|
|
131 |
return workflow.compile()
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
@flask_app.route("/", methods=["GET"])
|
134 |
def index():
|
135 |
return render_template("index.html")
|
136 |
|
137 |
@flask_app.route("/upload", methods=["GET", "POST"])
|
138 |
def upload():
|
139 |
+
global abs_file_path, agent_app
|
140 |
try:
|
141 |
if request.method == "POST":
|
142 |
file = request.files.get("file")
|
|
|
145 |
|
146 |
filename = secure_filename(file.filename)
|
147 |
if filename.endswith('.db'):
|
148 |
+
save_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
|
149 |
+
file.save(save_path)
|
150 |
+
abs_file_path = os.path.abspath(save_path)
|
151 |
+
agent_app = None
|
152 |
+
socketio.emit("log", {"message": f"Database '{filename}' uploaded."})
|
|
|
|
|
|
|
|
|
153 |
return redirect(url_for("index"))
|
154 |
return render_template("upload.html")
|
155 |
except Exception as e:
|
|
|
156 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
157 |
return render_template("upload.html")
|
158 |
|
|
|
|
|
|
|
|
|
|
|
159 |
@socketio.on("user_input")
|
160 |
def handle_user_input(data):
|
161 |
prompt = data.get("message")
|
162 |
if not prompt:
|
163 |
+
socketio.emit("log", {"message": "[ERROR]: Empty prompt."})
|
164 |
return
|
|
|
165 |
run_agent(prompt)
|
166 |
|
|
|
167 |
def run_agent(prompt):
|
168 |
global agent_app, abs_file_path
|
169 |
if not abs_file_path:
|
170 |
+
socketio.emit("final", {"message": "No DB uploaded."})
|
|
|
171 |
return
|
|
|
172 |
try:
|
173 |
if agent_app is None:
|
|
|
174 |
agent_app = create_agent_app(abs_file_path)
|
175 |
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
|
176 |
|
177 |
query = {"messages": [("user", prompt)]}
|
178 |
result = agent_app.invoke(query)
|
|
|
179 |
try:
|
180 |
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
|
181 |
except Exception:
|
182 |
result = "Query failed or no valid answer found."
|
|
|
|
|
183 |
socketio.emit("final", {"message": result})
|
184 |
except Exception as e:
|
|
|
185 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
186 |
socketio.emit("final", {"message": "Generation failed."})
|
187 |
|
|
|
|
|
|
|
|
|
|
|
188 |
if __name__ == "__main__":
|
189 |
+
socketio.run(flask_app, debug=True)
|