Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
0b15668
1
Parent(s):
11deb71
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,29 @@ class TransformerChatbot(Model):
|
|
39 |
def create_padding_mask(self, seq):
|
40 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
41 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
with open(datafile,"r") as f:
|
44 |
text = f.read()
|
45 |
text = text.lower()
|
@@ -88,30 +110,6 @@ def textcompletion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_r
|
|
88 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
89 |
|
90 |
out2 = output_sentence
|
91 |
-
return out2
|
92 |
-
st.title("UniGLM TEXT completion Model")
|
93 |
-
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
94 |
-
#Picking what NLP task you want to do
|
95 |
-
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
96 |
-
#Textbox for text user is entering
|
97 |
-
st.subheader("Enter a word from which a sentence / word would be predicted")
|
98 |
-
len2 = st.text_input('Enter sequence length: ')
|
99 |
-
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
100 |
-
|
101 |
-
|
102 |
-
if option == '13M':
|
103 |
-
vocab_size = 100000
|
104 |
-
max_len = 1
|
105 |
-
d_model = 64 # 64 , 1024
|
106 |
-
n_head = 4 # 8 , 16
|
107 |
-
ff_dim = 256 # 256 , 2048
|
108 |
-
dropout_rate = 0.1 # 0.5 , 0.2
|
109 |
-
weights = "predict3"
|
110 |
-
datafile = "data2.txt"
|
111 |
-
dict = "dict_predict3.bin.npz"
|
112 |
-
len = len2
|
113 |
-
text2 = text2
|
114 |
-
out2 = textcompletion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights, datafile , dict, len , text2)
|
115 |
|
116 |
|
117 |
elif option=="26M":
|
@@ -126,7 +124,55 @@ elif option=="26M":
|
|
126 |
dict = "dict_predict3.bin.npz"
|
127 |
len = len2
|
128 |
text2 = text2
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
st.write("Predicted Text: ")
|
132 |
st.write(out2)
|
|
|
39 |
def create_padding_mask(self, seq):
|
40 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
41 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
42 |
+
|
43 |
+
st.title("UniGLM TEXT completion Model")
|
44 |
+
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
45 |
+
#Picking what NLP task you want to do
|
46 |
+
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
47 |
+
#Textbox for text user is entering
|
48 |
+
st.subheader("Enter a word from which a sentence / word would be predicted")
|
49 |
+
len2 = st.text_input('Enter sequence length: ')
|
50 |
+
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
51 |
+
|
52 |
+
|
53 |
+
if option == '13M':
|
54 |
+
vocab_size = 100000
|
55 |
+
max_len = 1
|
56 |
+
d_model = 64 # 64 , 1024
|
57 |
+
n_head = 4 # 8 , 16
|
58 |
+
ff_dim = 256 # 256 , 2048
|
59 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
60 |
+
weights = "predict3"
|
61 |
+
datafile = "data2.txt"
|
62 |
+
dict = "dict_predict3.bin.npz"
|
63 |
+
len = len2
|
64 |
+
text2 = text2
|
65 |
with open(datafile,"r") as f:
|
66 |
text = f.read()
|
67 |
text = text.lower()
|
|
|
110 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
111 |
|
112 |
out2 = output_sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
elif option=="26M":
|
|
|
124 |
dict = "dict_predict3.bin.npz"
|
125 |
len = len2
|
126 |
text2 = text2
|
127 |
+
with open(datafile,"r") as f:
|
128 |
+
text = f.read()
|
129 |
+
text = text.lower()
|
130 |
+
words = text.split()
|
131 |
+
loaded_dict = np.load(dict, allow_pickle=True)
|
132 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
133 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
134 |
+
X = []
|
135 |
+
Y = []
|
136 |
+
for i in range(len(words)-1):
|
137 |
+
word = words[i]
|
138 |
+
next_word = words[i+1]
|
139 |
+
X.append(word_to_num[word])
|
140 |
+
Y.append(word_to_num[next_word])
|
141 |
+
Y.append(0)
|
142 |
+
|
143 |
+
X.append(word_to_num[words[-1]])
|
144 |
+
X_train = pad_sequences([X])
|
145 |
+
y_train = pad_sequences([Y])
|
146 |
|
147 |
+
|
148 |
+
|
149 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
150 |
+
chatbot.load_weights(weights)
|
151 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
152 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
153 |
+
|
154 |
+
for i in range(1):
|
155 |
+
other_text1 = text2
|
156 |
+
other_text1 = other_text1.lower()
|
157 |
+
other_words1 = other_text1.split()
|
158 |
+
other_num1 = [word_to_num[word] for word in other_words1]
|
159 |
+
given_X1 = other_num1
|
160 |
+
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
161 |
+
output_sentence = ""
|
162 |
+
for _ in range(len):
|
163 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
164 |
+
predicted_token = predicted_token.item()
|
165 |
+
out = num_to_word[predicted_token]
|
166 |
+
|
167 |
+
|
168 |
+
output_sentence = out
|
169 |
+
|
170 |
+
given_X1 = given_X1[1:]
|
171 |
+
given_X1.append(predicted_token)
|
172 |
+
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
173 |
+
|
174 |
+
out2 = output_sentence
|
175 |
+
else:
|
176 |
+
out2 = "Error: Wrong Model Selected"
|
177 |
st.write("Predicted Text: ")
|
178 |
st.write(out2)
|