Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
15985e2
1
Parent(s):
e5c8275
Update app.py
Browse files
app.py
CHANGED
@@ -44,12 +44,12 @@ class TransformerChatbot(Model):
|
|
44 |
st.title("UniGLM TEXT completion Model")
|
45 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
46 |
#Picking what NLP task you want to do
|
47 |
-
option = st.selectbox('Model',('
|
48 |
#Textbox for text user is entering
|
49 |
st.subheader("Enter a word from which a sentence / word would be predicted")
|
50 |
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
51 |
|
52 |
-
if option == '
|
53 |
with open("data2.txt","r") as f:
|
54 |
text = f.read()
|
55 |
text = text.lower()
|
@@ -74,13 +74,25 @@ if option == '1':
|
|
74 |
chatbot.build(input_shape=(None, max_len)) # Build the model
|
75 |
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
77 |
given_X1 = other_num1
|
78 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
79 |
-
output_sentence = ""
|
80 |
-
for _ in range(
|
81 |
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
82 |
predicted_token = predicted_token.item()
|
83 |
out = num_to_word[predicted_token]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
85 |
|
86 |
out2 = output_sentence
|
@@ -91,7 +103,7 @@ else:
|
|
91 |
text = f.read()
|
92 |
text = text.lower()
|
93 |
words = text.split()
|
94 |
-
loaded_dict = np.load("
|
95 |
word_to_num = loaded_dict["word_to_num"].item()
|
96 |
num_to_word = loaded_dict["num_to_word"].item()
|
97 |
X = []
|
@@ -108,14 +120,14 @@ else:
|
|
108 |
y_train = pad_sequences([Y])
|
109 |
vocab_size = 100000
|
110 |
max_len = 1
|
111 |
-
d_model =
|
112 |
n_head = 4 # 8 , 16
|
113 |
ff_dim = 256 # 256 , 2048
|
114 |
dropout_rate = 0.1 # 0.5 , 0.2
|
115 |
|
116 |
|
117 |
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
118 |
-
chatbot.load_weights("
|
119 |
chatbot.build(input_shape=(None, max_len)) # Build the model
|
120 |
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
121 |
|
|
|
44 |
st.title("UniGLM TEXT completion Model")
|
45 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
46 |
#Picking what NLP task you want to do
|
47 |
+
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
48 |
#Textbox for text user is entering
|
49 |
st.subheader("Enter a word from which a sentence / word would be predicted")
|
50 |
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
51 |
|
52 |
+
if option == '13M':
|
53 |
with open("data2.txt","r") as f:
|
54 |
text = f.read()
|
55 |
text = text.lower()
|
|
|
74 |
chatbot.build(input_shape=(None, max_len)) # Build the model
|
75 |
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
76 |
|
77 |
+
for i in range(1):
|
78 |
+
other_text1 = text2
|
79 |
+
other_text1 = other_text1.lower()
|
80 |
+
other_words1 = other_text1.split()
|
81 |
+
other_num1 = [word_to_num[word] for word in other_words1]
|
82 |
given_X1 = other_num1
|
83 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
84 |
+
output_sentence = other_text1+""
|
85 |
+
for _ in range(10):
|
86 |
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
87 |
predicted_token = predicted_token.item()
|
88 |
out = num_to_word[predicted_token]
|
89 |
+
|
90 |
+
|
91 |
+
output_sentence += " " + out
|
92 |
+
if out == ".":
|
93 |
+
break
|
94 |
+
given_X1 = given_X1[1:]
|
95 |
+
given_X1.append(predicted_token)
|
96 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
97 |
|
98 |
out2 = output_sentence
|
|
|
103 |
text = f.read()
|
104 |
text = text.lower()
|
105 |
words = text.split()
|
106 |
+
loaded_dict = np.load("dict_predict1.bin.npz", allow_pickle=True)
|
107 |
word_to_num = loaded_dict["word_to_num"].item()
|
108 |
num_to_word = loaded_dict["num_to_word"].item()
|
109 |
X = []
|
|
|
120 |
y_train = pad_sequences([Y])
|
121 |
vocab_size = 100000
|
122 |
max_len = 1
|
123 |
+
d_model = 128 # 64 , 1024
|
124 |
n_head = 4 # 8 , 16
|
125 |
ff_dim = 256 # 256 , 2048
|
126 |
dropout_rate = 0.1 # 0.5 , 0.2
|
127 |
|
128 |
|
129 |
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
130 |
+
chatbot.load_weights("predict1")
|
131 |
chatbot.build(input_shape=(None, max_len)) # Build the model
|
132 |
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
133 |
|