DHRUV SHEKHAWAT commited on
Commit
5ba996d
·
1 Parent(s): 496f3b5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ from keras.layers import Input, Dense, Embedding, MultiHeadAttention
4
+ from keras.layers import Dropout, LayerNormalization
5
+ from keras.models import Model
6
+ from keras.utils import pad_sequences
7
+ import numpy as np
8
+
9
+ class TransformerChatbot(Model):
10
+ def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
11
+ super(TransformerChatbot, self).__init__()
12
+ self.embedding = Embedding(vocab_size, d_model)
13
+ self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
14
+ self.norm1 = LayerNormalization(epsilon=1e-6)
15
+ self.dropout1 = Dropout(dropout_rate)
16
+ self.dense1 = Dense(ff_dim, activation="relu")
17
+ self.dense2 = Dense(d_model)
18
+ self.norm2 = LayerNormalization(epsilon=1e-6)
19
+ self.dropout2 = Dropout(dropout_rate)
20
+ self.flatten = tf.keras.layers.Flatten()
21
+ self.fc = Dense(vocab_size, activation="softmax")
22
+ self.max_len = max_len
23
+
24
+ def call(self, inputs):
25
+ x = self.embedding(inputs)
26
+ # Masking
27
+ mask = self.create_padding_mask(inputs)
28
+ attn_output = self.attention(x, x, x, attention_mask=mask)
29
+ x = x + attn_output
30
+ x = self.norm1(x)
31
+ x = self.dropout1(x)
32
+ x = self.dense1(x)
33
+ x = self.dense2(x)
34
+ x = self.norm2(x)
35
+ x = self.dropout2(x)
36
+ x = self.fc(x)
37
+ return x
38
+
39
+ def create_padding_mask(self, seq):
40
+ mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
41
+ return mask[:, tf.newaxis, tf.newaxis, :]
42
+ st.title("UniGLM TEXT completion Model")
43
+ st.subheader("Next Word Prediction AI Model by Webraft-AI")
44
+ #Picking what NLP task you want to do
45
+ option = st.selectbox('Model',('12M Param')) #option is stored in this variable
46
+ #Textbox for text user is entering
47
+ st.subheader("Enter the text you'd like to analyze.")
48
+ text = st.text_input('Enter word: ') #text is stored in this variable
49
+
50
+ if option == '12M Param':
51
+ loaded_dict = np.load("dict_predict3.bin.npz", allow_pickle=True)
52
+ word_to_num = loaded_dict["word_to_num"].item()
53
+ num_to_word = loaded_dict["num_to_word"].item()
54
+ X = loaded_dict["X"].item()
55
+ Y = loaded_dict["Y"].item()
56
+ X_train = pad_sequences([X])
57
+ y_train = pad_sequences([Y])
58
+ vocab_size = 100000
59
+ max_len = 1
60
+ d_model = 64 # 64 , 1024
61
+ n_head = 4 # 8 , 16
62
+ ff_dim = 256 # 256 , 2048
63
+ dropout_rate = 0.1 # 0.5 , 0.2
64
+
65
+
66
+ chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
67
+ chatbot.load_weights("predict3")
68
+ chatbot.build(input_shape=(None, max_len)) # Build the model
69
+ chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
70
+ other_text1 = text
71
+ for i in range(1):
72
+
73
+ other_text1 = other_text1.lower()
74
+ other_words1 = other_text1.split()
75
+ if len(other_words1) > 1:
76
+ st.write("Error: Found more than 1 word . There should not be more than one word in the prompt ")
77
+ for word in other_words1:
78
+ if word not in word_to_num:
79
+ st.write("Error: The word ` ",word," ` doesn't exist in the vocabulary and hence the model wasn't train on that. ")
80
+ else:
81
+ other_num1 = word_to_num[word]
82
+
83
+ given_X1 = other_num1
84
+ input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
85
+ output_sentence = other_text1 + ""
86
+ for _ in range(16):
87
+ predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
88
+ predicted_token = predicted_token.item()
89
+ out = num_to_word[predicted_token]
90
+
91
+
92
+ output_sentence += " " + out
93
+ if out == ".":
94
+ break
95
+ given_X1 = given_X1[1:]
96
+ given_X1.append(predicted_token)
97
+ input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
98
+ out = output_sentence
99
+
100
+
101
+ else:
102
+ out = "Wrong Model"
103
+
104
+ st.write("Predicted Text: ")
105
+ st.write(out)