DHRUV SHEKHAWAT commited on
Commit
f1215a7
·
1 Parent(s): 41505f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -52
app.py CHANGED
@@ -41,57 +41,7 @@ class TransformerChatbot(Model):
41
  def create_padding_mask(self, seq):
42
  mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
43
  return mask[:, tf.newaxis, tf.newaxis, :]
44
- def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len2,text2):
45
 
46
- with open(datafile,"r") as f:
47
- text = f.read()
48
- text = text.lower()
49
- words = text.split()
50
- loaded_dict = np.load(dict, allow_pickle=True)
51
- word_to_num = loaded_dict["word_to_num"].item()
52
- num_to_word = loaded_dict["num_to_word"].item()
53
- X = []
54
- Y = []
55
- for i in range(len(words)-1):
56
- word = words[i]
57
- next_word = words[i+1]
58
- X.append(word_to_num[word])
59
- Y.append(word_to_num[next_word])
60
- Y.append(0)
61
-
62
- X.append(word_to_num[words[-1]])
63
- X_train = pad_sequences([X])
64
- y_train = pad_sequences([Y])
65
-
66
-
67
-
68
- chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
69
- chatbot.load_weights(weights)
70
- chatbot.build(input_shape=(None, max_len)) # Build the model
71
- chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
72
-
73
- for i in range(1):
74
- other_text2 = text2
75
- other_text2 = other_text2.lower()
76
- other_words2 = other_text2.split()
77
- other_num2 = [word_to_num[word] for word in other_words2]
78
- given_X2 = other_num2
79
- input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
80
- output_sentence = other_text2 + ""
81
- for _ in range(len2):
82
- predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
83
- predicted_token = predicted_token.item()
84
- out = num_to_word[predicted_token]
85
- # if out == ".":
86
- # break
87
-
88
- output_sentence += " " + out
89
- given_X2 = given_X2[1:]
90
- given_X2.append(predicted_token)
91
- input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
92
-
93
- out2 = output_sentence
94
- return out2
95
  st.title("UniGLM TEXT completion Model")
96
  st.subheader("Next Word Prediction AI Model by Webraft-AI")
97
  #Picking what NLP task you want to do
@@ -143,7 +93,7 @@ if option == '13M_OLD':
143
  chatbot.load_weights(weights)
144
  chatbot.build(input_shape=(None, max_len)) # Build the model
145
  chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
146
-
147
  for i in range(1):
148
  other_text2 = text2
149
  other_text2 = other_text2.lower()
@@ -212,7 +162,7 @@ elif option=="26M_OLD":
212
  chatbot.load_weights(weights)
213
  chatbot.build(input_shape=(None, max_len)) # Build the model
214
  chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
215
-
216
  for i in range(1):
217
  other_text2 = text2
218
  other_text2 = other_text2.lower()
 
41
  def create_padding_mask(self, seq):
42
  mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
43
  return mask[:, tf.newaxis, tf.newaxis, :]
 
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  st.title("UniGLM TEXT completion Model")
46
  st.subheader("Next Word Prediction AI Model by Webraft-AI")
47
  #Picking what NLP task you want to do
 
93
  chatbot.load_weights(weights)
94
  chatbot.build(input_shape=(None, max_len)) # Build the model
95
  chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
96
+ chatbot.fit(X_train, y_train, epochs=1, batch_size=64)
97
  for i in range(1):
98
  other_text2 = text2
99
  other_text2 = other_text2.lower()
 
162
  chatbot.load_weights(weights)
163
  chatbot.build(input_shape=(None, max_len)) # Build the model
164
  chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
165
+ chatbot.fit(X_train, y_train, epochs=1, batch_size=64)
166
  for i in range(1):
167
  other_text2 = text2
168
  other_text2 = other_text2.lower()