DHRUV SHEKHAWAT
commited on
Commit
·
e06f3ec
1
Parent(s):
2eacd00
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,63 @@
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import json
|
3 |
import torch
|
4 |
from torch.utils.data import Dataset
|
5 |
import torch.utils.data
|
6 |
from models import *
|
7 |
from utils import *
|
8 |
-
|
9 |
-
st.
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#Textbox for text user is entering
|
13 |
-
st.subheader("Start the conversation")
|
14 |
-
text2 = st.text_input('Human: ') #text is stored in this variable
|
15 |
|
16 |
-
load_checkpoint = True
|
17 |
-
ckpt_path = 'checkpoint_190.pth.tar'
|
18 |
-
with open('WORDMAP_corpus.json', 'r') as j:
|
19 |
-
word_map = json.load(j)
|
20 |
|
21 |
def evaluate(transformer, question, question_mask, max_len, word_map):
|
22 |
"""
|
@@ -27,35 +68,28 @@ def evaluate(transformer, question, question_mask, max_len, word_map):
|
|
27 |
start_token = word_map['<start>']
|
28 |
encoded = transformer.encode(question, question_mask)
|
29 |
words = torch.LongTensor([[start_token]]).to(device)
|
30 |
-
|
31 |
for step in range(max_len - 1):
|
32 |
size = words.shape[1]
|
33 |
target_mask = torch.triu(torch.ones(size, size)).transpose(0, 1).type(dtype=torch.uint8)
|
34 |
target_mask = target_mask.to(device).unsqueeze(0).unsqueeze(0)
|
35 |
decoded = transformer.decode(words, target_mask, encoded, question_mask)
|
36 |
predictions = transformer.logit(decoded[:, -1])
|
37 |
-
_, next_word = torch.max(predictions, dim
|
38 |
next_word = next_word.item()
|
39 |
if next_word == word_map['<end>']:
|
40 |
break
|
41 |
-
words = torch.cat([words, torch.LongTensor([[next_word]]).to(device)], dim
|
42 |
-
|
43 |
# Construct Sentence
|
44 |
if words.dim() == 2:
|
45 |
words = words.squeeze(0)
|
46 |
words = words.tolist()
|
47 |
-
|
48 |
sen_idx = [w for w in words if w not in {word_map['<start>']}]
|
49 |
sentence = ' '.join([rev_word_map[sen_idx[k]] for k in range(len(sen_idx))])
|
50 |
-
|
51 |
-
return sentence
|
52 |
-
|
53 |
-
|
54 |
-
if load_checkpoint:
|
55 |
-
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
56 |
-
transformer = checkpoint['transformer']
|
57 |
-
|
58 |
|
|
|
59 |
def remove_punc(string):
|
60 |
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
|
61 |
no_punct = ""
|
@@ -63,12 +97,75 @@ def remove_punc(string):
|
|
63 |
if char not in punctuations:
|
64 |
no_punct = no_punct + char # space is also a character
|
65 |
return no_punct.lower()
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
+
from streamlit_chat import message
|
4 |
import json
|
5 |
import torch
|
6 |
from torch.utils.data import Dataset
|
7 |
import torch.utils.data
|
8 |
from models import *
|
9 |
from utils import *
|
10 |
+
# Setting page title and header
|
11 |
+
st.set_page_config(page_title="UniLM", page_icon=":robot_face:")
|
12 |
+
st.markdown("<h1 style='text-align: center;'>UniLM</h1>", unsafe_allow_html=True)
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# Initialise session state variables
|
17 |
+
if 'generated' not in st.session_state:
|
18 |
+
st.session_state['generated'] = []
|
19 |
+
if 'past' not in st.session_state:
|
20 |
+
st.session_state['past'] = []
|
21 |
+
if 'messages' not in st.session_state:
|
22 |
+
st.session_state['messages'] = [
|
23 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
24 |
+
]
|
25 |
+
if 'model_name' not in st.session_state:
|
26 |
+
st.session_state['model_name'] = []
|
27 |
+
if 'cost' not in st.session_state:
|
28 |
+
st.session_state['cost'] = []
|
29 |
+
if 'total_tokens' not in st.session_state:
|
30 |
+
st.session_state['total_tokens'] = []
|
31 |
+
if 'total_cost' not in st.session_state:
|
32 |
+
st.session_state['total_cost'] = 1
|
33 |
+
|
34 |
+
# Sidebar - let user choose model, show total cost of current conversation, and let user clear the current conversation
|
35 |
+
st.sidebar.title("Settings")
|
36 |
+
model_name = st.sidebar.selectbox("Model:", ("30M_6.1K","NONE"))
|
37 |
+
counter_placeholder = st.sidebar.empty()
|
38 |
+
|
39 |
+
clear_button = st.sidebar.button("Clear Conversation", key="clear")
|
40 |
+
|
41 |
+
# Map model names to OpenAI model IDs
|
42 |
+
if model_name == "30M_6.1K":
|
43 |
+
model = "30M_6.1K"
|
44 |
+
else:
|
45 |
+
model = "gpt-4"
|
46 |
+
|
47 |
+
# reset everything
|
48 |
+
if clear_button:
|
49 |
+
st.session_state['generated'] = []
|
50 |
+
st.session_state['past'] = []
|
51 |
+
st.session_state['messages'] = [
|
52 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
53 |
+
]
|
54 |
+
st.session_state['number_tokens'] = []
|
55 |
+
st.session_state['model_name'] = []
|
56 |
+
st.session_state['cost'] = []
|
57 |
+
st.session_state['total_cost'] = 0.0
|
58 |
+
st.session_state['total_tokens'] = []
|
59 |
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def evaluate(transformer, question, question_mask, max_len, word_map):
|
63 |
"""
|
|
|
68 |
start_token = word_map['<start>']
|
69 |
encoded = transformer.encode(question, question_mask)
|
70 |
words = torch.LongTensor([[start_token]]).to(device)
|
71 |
+
|
72 |
for step in range(max_len - 1):
|
73 |
size = words.shape[1]
|
74 |
target_mask = torch.triu(torch.ones(size, size)).transpose(0, 1).type(dtype=torch.uint8)
|
75 |
target_mask = target_mask.to(device).unsqueeze(0).unsqueeze(0)
|
76 |
decoded = transformer.decode(words, target_mask, encoded, question_mask)
|
77 |
predictions = transformer.logit(decoded[:, -1])
|
78 |
+
_, next_word = torch.max(predictions, dim=1)
|
79 |
next_word = next_word.item()
|
80 |
if next_word == word_map['<end>']:
|
81 |
break
|
82 |
+
words = torch.cat([words, torch.LongTensor([[next_word]]).to(device)], dim=1) # (1,step+2)
|
83 |
+
|
84 |
# Construct Sentence
|
85 |
if words.dim() == 2:
|
86 |
words = words.squeeze(0)
|
87 |
words = words.tolist()
|
88 |
+
|
89 |
sen_idx = [w for w in words if w not in {word_map['<start>']}]
|
90 |
sentence = ' '.join([rev_word_map[sen_idx[k]] for k in range(len(sen_idx))])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
return sentence
|
93 |
def remove_punc(string):
|
94 |
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
|
95 |
no_punct = ""
|
|
|
97 |
if char not in punctuations:
|
98 |
no_punct = no_punct + char # space is also a character
|
99 |
return no_punct.lower()
|
100 |
+
|
101 |
+
if model_name == "30M_6.1K":
|
102 |
+
load_checkpoint = True
|
103 |
+
ckpt_path = 'checkpoint_190.pth.tar'
|
104 |
+
with open('WORDMAP_corpus.json', 'r') as j:
|
105 |
+
word_map = json.load(j)
|
106 |
+
if load_checkpoint:
|
107 |
+
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
108 |
+
transformer = checkpoint['transformer']
|
109 |
+
else:
|
110 |
+
load_checkpoint = True
|
111 |
+
ckpt_path = 'checkpoint_190.pth.tar'
|
112 |
+
with open('WORDMAP_corpus.json', 'r') as j:
|
113 |
+
word_map = json.load(j)
|
114 |
+
if load_checkpoint:
|
115 |
+
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
116 |
+
transformer = checkpoint['transformer']
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
# generate a response
|
121 |
+
def generate_response(prompt):
|
122 |
+
st.session_state['messages'].append({"role": "user", "content": prompt})
|
123 |
+
question = remove_punc(prompt)
|
124 |
+
|
125 |
+
max_len = 153
|
126 |
+
enc_qus = [word_map.get(word, word_map['<unk>']) for word in question.split()]
|
127 |
+
question = torch.LongTensor(enc_qus).to(device).unsqueeze(0)
|
128 |
+
question_mask = (question != 0).to(device).unsqueeze(1).unsqueeze(1)
|
129 |
+
sentence = evaluate(transformer, question, question_mask, int(max_len), word_map)
|
130 |
+
|
131 |
+
response = sentence
|
132 |
+
st.session_state['messages'].append({"role": "assistant", "content": response})
|
133 |
+
|
134 |
+
# print(st.session_state['messages'])
|
135 |
+
total_tokens = "153"
|
136 |
+
prompt_tokens = "153"
|
137 |
+
completion_tokens = "153"
|
138 |
+
return response, total_tokens, prompt_tokens, completion_tokens
|
139 |
+
|
140 |
+
|
141 |
+
# container for chat history
|
142 |
+
response_container = st.container()
|
143 |
+
# container for text box
|
144 |
+
container = st.container()
|
145 |
+
|
146 |
+
with container:
|
147 |
+
with st.form(key='my_form', clear_on_submit=True):
|
148 |
+
user_input = st.text_area("You:", key='input', height=2)
|
149 |
+
submit_button = st.form_submit_button(label='✉')
|
150 |
+
|
151 |
+
if submit_button and user_input:
|
152 |
+
output, total_tokens, prompt_tokens, completion_tokens = generate_response(user_input)
|
153 |
+
st.session_state['past'].append(user_input)
|
154 |
+
st.session_state['generated'].append(output)
|
155 |
+
st.session_state['model_name'].append(model_name)
|
156 |
+
st.session_state['total_tokens'].append(total_tokens)
|
157 |
+
|
158 |
+
# from https://openai.com/pricing#language-models
|
159 |
+
if model_name == "30M_6.1K":
|
160 |
+
cost = "1"
|
161 |
+
else:
|
162 |
+
cost = "2"
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
if st.session_state['generated']:
|
167 |
+
with response_container:
|
168 |
+
for i in range(len(st.session_state['generated'])):
|
169 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user')
|
170 |
+
message(st.session_state["generated"][i], key=str(i))
|
171 |
|