File size: 9,226 Bytes
a9c75c3
 
 
 
 
 
 
 
 
 
 
 
 
9602223
a9c75c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
import random
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"

load_dotenv()

# Initialize the client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get('LLL')  # Add your Huggingface token here  
)

# Supported models
model_links = {
    "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}

# Random dog images for error messages
random_dog = [
    "0f476473-2d8b-415e-b944-483768418a95.jpg",
    "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
    "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
    "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
]

# Reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# Define the available models
models = [key for key in model_links.keys()]

# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)

# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)

# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

# Chat initialization
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])

if task_choice == "Data Generation":
    classification_type = st.selectbox(
        "Choose Classification Type",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    if classification_type == "Sentiment Analysis":
        st.write("Sentiment Analysis: Positive, Negative, Neutral")
        labels = ["Positive", "Negative", "Neutral"]
    elif classification_type == "Binary Classification":
        label_1 = st.text_input("Enter first class")
        label_2 = st.text_input("Enter second class")
        labels = [label_1, label_2]
    elif classification_type == "Multi-Class Classification":
        num_classes = st.slider("How many classes?", 3, 10, 3)
        labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]

    domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
    if domain == "Custom":
        domain = st.text_input("Specify custom domain")

    min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
    max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)

    few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
    if few_shot == "Yes":
        num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
        few_shot_examples = [
            {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
            for i in range(num_examples)
        ]
    else:
        few_shot_examples = []

    # Ask the user how many examples they need
    num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)

    # User prompt text field
    user_prompt = st.text_area("Enter your prompt to guide example generation", "")

    # System prompt generation
    system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
    if few_shot_examples:
        system_prompt += "Use the following few-shot examples as a reference:\n"
        for example in few_shot_examples:
            system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
    system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
    system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
    system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
    if user_prompt:
        system_prompt += f"Additional instructions: {user_prompt}\n"

    st.write("System Prompt:")
    st.code(system_prompt)

    if st.button("Generate Examples"):
        with st.spinner("Generating..."):
            st.session_state.messages.append({"role": "system", "content": system_prompt})

            try:
                stream = client.chat.completions.create(
                    model=model_links[selected_model],
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temp_values,
                    stream=True,
                    max_tokens=3000,
                )
                response = st.write_stream(stream)
            except Exception as e:
                response = "Error during generation."
                random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
                st.image(random_dog_pick)
                st.write(e)

            st.session_state.messages.append({"role": "assistant", "content": response})

else:  # Data Labeling Process
    labeling_classification_type = st.selectbox(
        "Choose Classification Type for Labeling",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    # Initialize labels based on classification type
    if labeling_classification_type == "Sentiment Analysis":
        st.write("Sentiment Analysis: Positive, Negative, Neutral")
        labeling_labels = ["Positive", "Negative", "Neutral"]
    elif labeling_classification_type == "Binary Classification":
        labeling_label_1 = st.text_input("Enter first class for labeling")
        labeling_label_2 = st.text_input("Enter second class for labeling")
        labeling_labels = [labeling_label_1, labeling_label_2]
    elif labeling_classification_type == "Multi-Class Classification":
        labeling_num_classes = st.slider("How many classes for labeling?", 3, 10, 3)
        labeling_labels = [st.text_input(f"Labeling Class {i+1}") for i in range(labeling_num_classes)]

    # Few-shot examples for labeling
    labeling_few_shot = st.radio("Do you want to add few-shot examples for labeling?", ["Yes", "No"])
    if labeling_few_shot == "Yes":
        labeling_num_examples = st.slider("How many few-shot examples for labeling?", 1, 5, 1)
        labeling_few_shot_examples = [
            {"content": st.text_area(f"Labeling Example {i+1}"), 
             "label": st.selectbox(f"Label for labeling example {i+1}", labeling_labels)}
            for i in range(labeling_num_examples)
        ]
    else:
        labeling_few_shot_examples = []

    # Input for text to classify
    text_to_classify = st.text_area("Enter text to classify")

    if st.button("Classify Text"):
        if text_to_classify:
            # Prepare the system prompt for classification
            labeling_system_prompt = f"You are a professional {labeling_classification_type.lower()} expert. "
            labeling_system_prompt += f"Classify the following text using these labels: {', '.join(labeling_labels)}.\n\n"
            
            if labeling_few_shot_examples:
                labeling_system_prompt += "Here are some examples for reference:\n"
                for example in labeling_few_shot_examples:
                    labeling_system_prompt += f"Text: {example['content']}\nLabel: {example['label']}\n\n"
            
            labeling_system_prompt += f"Text to classify: {text_to_classify}\n"
            labeling_system_prompt += "Provide your classification in this format: 'Classification: [label]'\n"
            labeling_system_prompt += "Also provide a brief explanation for your classification."

            with st.spinner("Classifying..."):
                st.session_state.messages.append({"role": "system", "content": labeling_system_prompt})

                try:
                    stream = client.chat.completions.create(
                        model=model_links[selected_model],
                        messages=[
                            {"role": m["role"], "content": m["content"]}
                            for m in st.session_state.messages
                        ],
                        temperature=temp_values,
                        stream=True,
                        max_tokens=1000,
                    )
                    response = st.write_stream(stream)
                except Exception as e:
                    response = "Error during classification."
                    random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
                    st.image(random_dog_pick)
                    st.write(e)

                st.session_state.messages.append({"role": "assistant", "content": response})
        else:
            st.warning("Please enter text to classify.")