File size: 3,363 Bytes
e8f079f 002b092 9f54a3b c2231bb 9f54a3b c2231bb 9f54a3b c2231bb 9f54a3b c2231bb 9f54a3b c2231bb 002b092 c2231bb 002b092 142827c c2231bb 142827c 9f54a3b c2231bb 142827c c2231bb 142827c 0ca86ba c2231bb 142827c c2231bb 9f54a3b c2231bb 9f54a3b 002b092 c2231bb 002b092 c2231bb 002b092 c2231bb 002b092 c2231bb 002b092 c2231bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
load_dotenv()
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
)
# Define Llama 3 model
model_link = "meta-llama/Meta-Llama-3-8B-Instruct"
model_info = {
'description': """The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n
It was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
'logo': 'Llama_logo.png'
}
# Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
"1326984c-39b0-492c-a773-f120d747a7e2.jpg"]
def reset_conversation():
'''Resets Conversation'''
st.session_state.conversation = []
st.session_state.messages = []
return None
# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
# Create model description
st.sidebar.write(f"You're now chatting with **Llama 3**")
st.sidebar.markdown(model_info['description'])
st.sidebar.image(model_info['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\nRun into issues? \nTry again later as GPU access might be limited.")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input(f"Hi, I'm Llama 3, ask me a question"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display assistant response in chat message container
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_link,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
response = "😵💫 Looks like something went wrong! Try again later.\nHere's a random pic of a 🐶:"
st.write(response)
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})
|