File size: 7,693 Bytes
8654ff1
 
 
 
 
 
 
 
 
 
 
 
 
77b552b
8654ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b585346
8654ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import streamlit as st
from openai import OpenAI
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate

# Load environment variables
load_dotenv()
##openai_api_key = os.getenv("OPENAI_API_KEY")

# Initialize the client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get('TOKEN2')  # Add your Huggingface token here
)


# Initialize the OpenAI client
##client = OpenAI(
    ##base_url="https://api-inference.huggingface.co/v1",
    ##api_key=openai_api_key
##)

# Define reset function for the conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

# Streamlit interface setup
st.title("🤖 Text Data Generation & Labeling App")
st.sidebar.title("Settings")

# Sidebar settings
selected_model = st.sidebar.selectbox("Select Model", ["meta-llama/Meta-Llama-3-8B-Instruct"])
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
st.sidebar.button("Reset Conversation", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Note: Generated content may be inaccurate or false.*")

# Initialize conversation state
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display conversation
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Main logic: choose between Data Generation and Data Labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])

if task_choice == "Data Generation":
    classification_type = st.selectbox(
        "Choose Classification Type",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    if classification_type == "Sentiment Analysis":
        labels = ["Positive", "Negative", "Neutral"]
    elif classification_type == "Binary Classification":
        label_1 = st.text_input("Enter first class")
        label_2 = st.text_input("Enter second class")
        labels = [label_1, label_2]
    else:  # Multi-Class Classification
        num_classes = st.slider("How many classes?", 3, 10, 3)
        labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]

    domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
    if domain == "Custom":
        domain = st.text_input("Specify custom domain")

    min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
    max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)

    use_few_shot = st.radio("Use few-shot examples?", ["Yes", "No"])
    few_shot_examples = []
    if use_few_shot == "Yes":
        num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
        for i in range(num_examples):
            content = st.text_area(f"Example {i+1} Content")
            label = st.selectbox(f"Example {i+1} Label", labels)
            few_shot_examples.append({"content": content, "label": label})

    num_to_generate = st.number_input("Number of examples to generate", 1, 100, 10)
    user_prompt = st.text_area("Enter additional instructions", "")

    # Construct the LangChain prompt
    prompt_template = PromptTemplate(
        input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
        template=(
            "You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
            "Use the following parameters:\n"
            "- Number of examples: {num_examples}\n"
            "- Word range: {min_words}-{max_words}\n"
            "- Labels: {labels}\n"
            "{user_prompt}"
        )
    )
    system_prompt = prompt_template.format(
        classification_type=classification_type,
        domain=domain,
        num_examples=num_to_generate,
        min_words=min_words,
        max_words=max_words,
        labels=", ".join(labels),
        user_prompt=user_prompt
    )

    st.write("System Prompt:")
    st.code(system_prompt)

    if st.button("Generate Examples"):
        with st.spinner("Generating..."):
            st.session_state.messages.append({"role": "system", "content": system_prompt})
            try:
                stream = client.chat.completions.create(
                    model=selected_model,
                    messages=[{"role": "system", "content": system_prompt}],
                    temperature=temperature,
                    stream=True,
                    max_tokens=3000,
                )
                response = st.write_stream(stream)
                st.session_state.messages.append({"role": "assistant", "content": response})
            except Exception as e:
                st.error("An error occurred during generation.")
                st.error(f"Details: {e}")

elif task_choice == "Data Labeling":
    # Labeling logic
    labeling_type = st.selectbox(
        "Classification Type for Labeling",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    if labeling_type == "Sentiment Analysis":
        labels = ["Positive", "Negative", "Neutral"]
    elif labeling_type == "Binary Classification":
        label_1 = st.text_input("First label for classification")
        label_2 = st.text_input("Second label for classification")
        labels = [label_1, label_2]
    else:  # Multi-Class Classification
        num_classes = st.slider("Number of labels", 3, 10, 3)
        labels = [st.text_input(f"Label {i+1}") for i in range(num_classes)]

    use_few_shot_labeling = st.radio("Add few-shot examples for labeling?", ["Yes", "No"])
    few_shot_labeling_examples = []
    if use_few_shot_labeling == "Yes":
        num_labeling_examples = st.slider("Number of few-shot labeling examples", 1, 5, 1)
        for i in range(num_labeling_examples):
            content = st.text_area(f"Labeling Example {i+1} Content")
            label = st.selectbox(f"Label for Example {i+1}", labels)
            few_shot_labeling_examples.append({"content": content, "label": label})

    text_to_classify = st.text_area("Enter text to classify")

    if st.button("Classify Text"):
        if text_to_classify:
            labeling_prompt = (
                f"You are an expert in {labeling_type.lower()} classification. Classify this text using: {', '.join(labels)}.\n\n"
            )
            if few_shot_labeling_examples:
                labeling_prompt += "Example classifications:\n"
                for ex in few_shot_labeling_examples:
                    labeling_prompt += f"Text: {ex['content']} - Label: {ex['label']}\n"
            labeling_prompt += f"\nClassify this: {text_to_classify}"

            with st.spinner("Classifying..."):
                st.session_state.messages.append({"role": "system", "content": labeling_prompt})
                try:
                    stream = client.chat.completions.create(
                        model=selected_model,
                        messages=[{"role": "system", "content": labeling_prompt}],
                        temperature=temperature,
                        stream=True,
                        max_tokens=3000,
                    )
                    labeling_response = st.write_stream(stream)
                    st.write("Label:", labeling_response)
                except Exception as e:
                    st.error("An error occurred during classification.")
                    st.error(f"Details: {e}")
        else:
            st.warning("Please enter text to classify.")