Spaces:
Sleeping
Sleeping
import numpy as np | |
import streamlit as st | |
from openai import OpenAI | |
import os | |
from dotenv import load_dotenv | |
import random | |
os.environ["BROWSER_GATHERUSAGESTATS"] = "false" | |
load_dotenv() | |
# Initialize the client | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('TOKEN2') # Add your Huggingface token here | |
) | |
# Supported models | |
model_links = { | |
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct" | |
} | |
# Reset conversation | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
# Define the available models | |
models = [key for key in model_links.keys()] | |
# Sidebar for model selection | |
selected_model = st.sidebar.selectbox("Select Model", models) | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) | |
st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
# Chat initialization | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Main logic to choose between data generation and data labeling | |
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"]) | |
if task_choice == "Data Generation": | |
classification_type = st.selectbox( | |
"Choose Classification Type", | |
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] | |
) | |
if classification_type == "Sentiment Analysis": | |
st.write("Sentiment Analysis: Positive, Negative, Neutral") | |
labels = ["Positive", "Negative", "Neutral"] | |
elif classification_type == "Binary Classification": | |
label_1 = st.text_input("Enter first class") | |
label_2 = st.text_input("Enter second class") | |
labels = [label_1, label_2] | |
elif classification_type == "Multi-Class Classification": | |
num_classes = st.slider("How many classes?", 3, 10, 3) | |
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)] | |
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"]) | |
if domain == "Custom": | |
domain = st.text_input("Specify custom domain") | |
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10) | |
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90) | |
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"]) | |
if few_shot == "Yes": | |
num_examples = st.slider("How many few-shot examples?", 1, 5, 1) | |
few_shot_examples = [ | |
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)} | |
for i in range(num_examples) | |
] | |
else: | |
few_shot_examples = [] | |
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10) | |
user_prompt = st.text_area("Enter your prompt to guide example generation", "") | |
# System prompt generation | |
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" | |
if few_shot_examples: | |
system_prompt += "Use the following few-shot examples as a reference:\n" | |
for example in few_shot_examples: | |
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n" | |
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n" | |
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" | |
system_prompt += f"Use the labels specified: {', '.join(labels)}.\n" | |
if user_prompt: | |
system_prompt += f"Additional instructions: {user_prompt}\n" | |
st.write("System Prompt:") | |
st.code(system_prompt) | |
if st.button("Generate Examples"): | |
with st.spinner("Generating..."): | |
st.session_state.messages.append({"role": "system", "content": system_prompt}) | |
try: | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=3000, | |
) | |
response = st.write_stream(stream) | |
except Exception as e: | |
st.error("An error occurred during generation.") | |
st.error(f"Error details: {str(e)}") | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
else: # Data Labeling Process | |
labeling_classification_type = st.selectbox( | |
"Choose Classification Type for Labeling", | |
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] | |
) | |
if labeling_classification_type == "Sentiment Analysis": | |
st.write("Sentiment Analysis: Positive, Negative, Neutral") | |
labeling_labels = ["Positive", "Negative", "Neutral"] | |
elif labeling_classification_type == "Binary Classification": | |
labeling_label_1 = st.text_input("Enter first class for labeling") | |
labeling_label_2 = st.text_input("Enter second class for labeling") | |
labeling_labels = [labeling_label_1, labeling_label_2] | |
elif labeling_classification_type == "Multi-Class Classification": | |
labeling_num_classes = st.slider("How many classes for labeling?", 3, 10, 3) | |
labeling_labels = [st.text_input(f"Labeling Class {i+1}") for i in range(labeling_num_classes)] | |
labeling_few_shot = st.radio("Do you want to add few-shot examples for labeling?", ["Yes", "No"]) | |
if labeling_few_shot == "Yes": | |
labeling_num_examples = st.slider("How many few-shot examples for labeling?", 1, 5, 1) | |
labeling_few_shot_examples = [ | |
{"content": st.text_area(f"Labeling Example {i+1}"), | |
"label": st.selectbox(f"Label for labeling example {i+1}", labeling_labels)} | |
for i in range(labeling_num_examples) | |
] | |
else: | |
labeling_few_shot_examples = [] | |
text_to_classify = st.text_area("Enter text to classify") | |
if st.button("Classify Text"): | |
if text_to_classify: | |
labeling_system_prompt = ( | |
f"You are a professional {labeling_classification_type.lower()} expert. " | |
f"Classify the following text using these labels: {', '.join(labeling_labels)}.\n\n" | |
) | |
if labeling_few_shot_examples: | |
labeling_system_prompt += "Here are some example classifications:\n" | |
for example in labeling_few_shot_examples: | |
labeling_system_prompt += f"Review: {example['content']}\nLabel: {example['label']}\n\n" | |
labeling_system_prompt += ( | |
f"Text to classify: {text_to_classify}\n" | |
f"Provide only the classification result in this format:\n" | |
f"'Review: [text provided] Label: [appropriate label]'\n" | |
) | |
with st.spinner("Classifying..."): | |
st.session_state.messages.append({"role": "system", "content": labeling_system_prompt}) | |
try: | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=1000, | |
) | |
response = st.write_stream(stream) | |
except Exception as e: | |
st.error("An error occurred during classification.") | |
st.error(f"Error details: {str(e)}") | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
else: | |
st.warning("Please enter text to classify.") | |