|
import streamlit as st |
|
from openai import OpenAI |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
def create_system_prompt(classification_type, num_to_generate, domain, min_words, max_words, labels): |
|
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate exactly {num_to_generate} data examples for {domain}. " |
|
system_prompt += f"Each example should consist of between {min_words} and {max_words} words. " |
|
system_prompt += "Use the following labels: " + ", ".join(labels) + ". Please do not add any extra commentary or explanation. " |
|
system_prompt += "Format each example like this: \nExample: <text>, Label: <label>\n" |
|
return system_prompt |
|
|
|
|
|
client = OpenAI(api_key='YOUR_API_KEY') |
|
|
|
|
|
st.title("Data Generation for Classification") |
|
|
|
|
|
mode = st.radio("Choose Task:", ["Data Generation", "Data Labeling"]) |
|
|
|
if mode == "Data Generation": |
|
|
|
classification_type = st.radio( |
|
"Select Classification Type:", |
|
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] |
|
) |
|
|
|
|
|
if classification_type == "Sentiment Analysis": |
|
labels = ["Positive", "Negative", "Neutral"] |
|
elif classification_type == "Binary Classification": |
|
class1 = st.text_input("Enter First Class for Binary Classification") |
|
class2 = st.text_input("Enter Second Class for Binary Classification") |
|
labels = [class1, class2] |
|
elif classification_type == "Multi-Class Classification": |
|
num_classes = st.slider("Number of Classes (Max 10):", 2, 10, 3) |
|
labels = [st.text_input(f"Enter Class {i+1}") for i in range(num_classes)] |
|
|
|
|
|
domain = st.radio( |
|
"Select Domain:", |
|
["Restaurant reviews", "E-commerce reviews", "Custom"] |
|
) |
|
if domain == "Custom": |
|
domain = st.text_input("Enter Custom Domain") |
|
|
|
|
|
min_words = st.slider("Minimum Words per Example", 10, 90, 20) |
|
max_words = st.slider("Maximum Words per Example", 10, 90, 40) |
|
|
|
|
|
use_few_shot = st.checkbox("Use Few-Shot Examples?") |
|
|
|
few_shot_examples = [] |
|
if use_few_shot: |
|
num_few_shots = st.slider("Number of Few-Shot Examples (Max 5):", 1, 5, 2) |
|
for i in range(num_few_shots): |
|
example_text = st.text_area(f"Enter Example {i+1} Text") |
|
example_label = st.selectbox(f"Select Label for Example {i+1}", labels) |
|
few_shot_examples.append(f"Example: {example_text}, Label: {example_label}") |
|
|
|
|
|
num_to_generate = st.number_input("Number of Examples to Generate", min_value=1, max_value=50, value=10) |
|
|
|
|
|
system_prompt = create_system_prompt(classification_type, num_to_generate, domain, min_words, max_words, labels) |
|
|
|
if st.button("Generate Examples"): |
|
all_generated_examples = [] |
|
remaining_examples = num_to_generate |
|
|
|
with st.spinner("Generating..."): |
|
while remaining_examples > 0: |
|
chunk_size = min(remaining_examples, 5) |
|
try: |
|
|
|
st.session_state.messages.append({"role": "system", "content": system_prompt}) |
|
|
|
|
|
if few_shot_examples: |
|
for example in few_shot_examples: |
|
st.session_state.messages.append({"role": "user", "content": example}) |
|
|
|
|
|
stream = client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
temperature=0.7, |
|
stream=True, |
|
max_tokens=3000, |
|
) |
|
|
|
|
|
response = "" |
|
for chunk in stream: |
|
if 'content' in chunk['choices'][0]['delta']: |
|
response += chunk['choices'][0]['delta']['content'] |
|
|
|
|
|
generated_examples = response.split("Example: ")[1:chunk_size+1] |
|
|
|
|
|
cleaned_examples = [f"Example {i+1}: {ex.strip()}" for i, ex in enumerate(generated_examples)] |
|
|
|
|
|
all_generated_examples.extend(cleaned_examples) |
|
remaining_examples -= chunk_size |
|
|
|
except Exception as e: |
|
st.error("Error during generation.") |
|
st.write(e) |
|
break |
|
|
|
|
|
for idx, example in enumerate(all_generated_examples): |
|
st.write(f"Example {idx+1}: {example.strip()}") |
|
|
|
|
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
|