Update app104.py
Browse files
app104.py
CHANGED
@@ -12,6 +12,9 @@ from openai import OpenAI
|
|
12 |
from dotenv import load_dotenv
|
13 |
import warnings
|
14 |
|
|
|
|
|
|
|
15 |
warnings.filterwarnings('ignore')
|
16 |
|
17 |
os.getenv("OAUTH_CLIENT_ID")
|
@@ -23,6 +26,79 @@ client = OpenAI(
|
|
23 |
base_url="https://api-inference.huggingface.co/v1",
|
24 |
api_key=os.environ.get('TOKEN2') # Hugging Face API token
|
25 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
####new
|
28 |
# from openai import OpenAI
|
@@ -168,13 +244,21 @@ with st.sidebar:
|
|
168 |
mime="application/pdf"
|
169 |
)
|
170 |
|
171 |
-
selected_model = st.selectbox(
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
)
|
|
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
temperature = st.slider(
|
179 |
"Temperature",
|
180 |
0.0, 1.0, 0.7,
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
import warnings
|
14 |
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
+
import torch
|
17 |
+
|
18 |
warnings.filterwarnings('ignore')
|
19 |
|
20 |
os.getenv("OAUTH_CLIENT_ID")
|
|
|
26 |
base_url="https://api-inference.huggingface.co/v1",
|
27 |
api_key=os.environ.get('TOKEN2') # Hugging Face API token
|
28 |
)
|
29 |
+
##########################################################3
|
30 |
+
# import streamlit as st
|
31 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
32 |
+
# import torch
|
33 |
+
|
34 |
+
# Model selection dropdown
|
35 |
+
selected_model = st.selectbox(
|
36 |
+
"Select Model",
|
37 |
+
["meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
38 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
39 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
40 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
41 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
42 |
+
"meta-llama/Llama-3.1-70B-Instruct"],
|
43 |
+
key='model_select'
|
44 |
+
)
|
45 |
+
|
46 |
+
@st.cache_resource # Cache the model to prevent reloading
|
47 |
+
def load_model(model_name):
|
48 |
+
try:
|
49 |
+
# Optimized model loading configuration
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_name,
|
52 |
+
torch_dtype=torch.float16, # Use half precision
|
53 |
+
device_map="auto", # Automatic device mapping
|
54 |
+
load_in_8bit=True, # Enable 8-bit quantization
|
55 |
+
low_cpu_mem_usage=True, # Optimize CPU memory usage
|
56 |
+
max_memory={0: "10GB"} # Limit GPU memory usage
|
57 |
+
)
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
60 |
+
model_name,
|
61 |
+
padding_side="left",
|
62 |
+
truncation_side="left"
|
63 |
+
)
|
64 |
+
|
65 |
+
return model, tokenizer
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
st.error(f"Error loading model: {str(e)}")
|
69 |
+
return None, None
|
70 |
+
|
71 |
+
# Load the selected model with optimizations
|
72 |
+
if selected_model:
|
73 |
+
model, tokenizer = load_model(selected_model)
|
74 |
+
|
75 |
+
# Check if model loaded successfully
|
76 |
+
if model is not None:
|
77 |
+
st.success(f"Successfully loaded {selected_model}")
|
78 |
+
else:
|
79 |
+
st.warning("Please select a different model or check your hardware capabilities")
|
80 |
+
|
81 |
+
# Function to generate text
|
82 |
+
def generate_response(prompt, model, tokenizer):
|
83 |
+
try:
|
84 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
outputs = model.generate(
|
88 |
+
inputs["input_ids"],
|
89 |
+
max_length=256,
|
90 |
+
num_return_sequences=1,
|
91 |
+
temperature=0.7,
|
92 |
+
do_sample=True,
|
93 |
+
pad_token_id=tokenizer.pad_token_id
|
94 |
+
)
|
95 |
+
|
96 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
97 |
+
return response
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error generating response: {str(e)}"
|
101 |
+
############################################################
|
102 |
|
103 |
####new
|
104 |
# from openai import OpenAI
|
|
|
244 |
mime="application/pdf"
|
245 |
)
|
246 |
|
247 |
+
# selected_model = st.selectbox(
|
248 |
+
# "Select Model",
|
249 |
+
# ["meta-llama/Meta-Llama-3-8B-Instruct-Turbo", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct","meta-llama/Llama-4-Scout-17B-16E-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct",
|
250 |
+
# "meta-llama/Llama-3.1-70B-Instruct"],
|
251 |
+
# key='model_select'
|
252 |
+
# )
|
253 |
+
|
254 |
|
255 |
+
|
256 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
257 |
+
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
258 |
+
# torch_dtype=torch.float16, # Use half precision
|
259 |
+
# device_map="auto", # Automatic device mapping
|
260 |
+
# load_in_8bit=True # Load in 8-bit precision
|
261 |
+
# )
|
262 |
temperature = st.slider(
|
263 |
"Temperature",
|
264 |
0.0, 1.0, 0.7,
|